1
Homeostasis y señalización celular
OBJETIVOS DE APRENDIZAJE ACTIVO
Cuando se familiarice con toda la información de este capítulo, será capaz de:
• Identificar las variables más importantes que son esenciales para la vida y comentar cómo son alteradas por fuerzas externas e internas. Explicar de qué modo la homeostasis beneficia a la supervivencia de un organismo cuando tales fuerzas alteran estas variables esenciales.
• Explicar las diferencias entre la retroalimentación negativa y positiva, y comentar su relación con la homeostasis.
• Comparar la situación estable y el estado de equilibrio respecto al gasto energético que supone crear dichos estados.
• Entender de qué forma las uniones comunicantes y los receptores de membrana plasmática regulan la comunicación entre células.
• Explicar en qué difieren la señalización paracrina, autocrina y endocrina en lo que respecta a sus funciones en el control de la función celular.
• Entender de qué modo los segundos mensajeros regulan y amplifican la transducción de señales.
• Explicar la interrelación entre el control de la concentración de calcio intracelular o la forma en que el calcio se almacena y el modo en que se utiliza para la transducción de señales celulares.
• Explicar de qué modo las especies reactivas del oxígeno pueden actuar como segundos mensajeros y también tener efectos patológicos.
• Explicar de qué forma la señalización mitógena regula el crecimiento, la proliferación y la supervivencia de las células.
• Diferenciar la apoptosis y la necrosis en lo que se refiere a la regulación normal del ciclo vital celular en comparación con el daño y la muerte celular de carácter patológico.
La fisiología es el estudio de los procesos y las funciones de los organismos vivos. Es un campo de conocimiento dinámico y en expansión que abarca muchas disciplinas, y tiene profundas raíces en la física, la química y las matemáticas. Los fisiólogos presuponen que las mismas leyes químicas y físicas que se aplican al mundo inanimado gobiernan también los procesos del organismo. Intentan describir las funciones desde el punto de vista de la física, la química y la ingeniería. Por ejemplo, la distribución de los iones a través de las membranas celulares se describe en términos termodinámicos, la contracción muscular se analiza en términos de fuerzas y velocidades, y la regulación en el organismo se describe en relación con la teoría de los sistemas de control. Dado que las funciones de un sistema vivo son desempeñadas por las estructuras que lo componen, conocer esta estructura, desde la anatomía macroscópica hasta el nivel molecular, es importante para comprender la fisiología.
La fisiología estudia desde las actividades o funciones de cada molécula y célula hasta la interacción del cuerpo con el mundo exterior. En los últimos años, se ha avanzado mucho en el conocimiento de los procesos fisiológicos a nivel molecular y celular. En los organismos superiores, los cambios de la función celular se producen en el contexto de todo el organismo, y diferentes tejidos y órganos pueden influirse mutuamente. Para que un organismo tenga una actividad independiente, es necesaria la coordinación de las funciones en todos los niveles, desde el molecular y el celular hasta el nivel del individuo en conjunto. El conocimiento del modo en que las diferentes poblaciones de células que constituyen los tejidos son controladas, de cómo interactúan y de qué forma se adaptan a condiciones cambiantes es una parte fundamental de la fisiología. Para que una persona se mantenga sana, las condiciones fisiológicas del organismo deben ser óptimas y estar muy reguladas, y la regulación exige que exista una comunicación eficiente entre las células y los tejidos. En este capítulo se tratan diversos temas relacionados con la regulación y la comunicación: el medio interno, la homeostasis del líquido extracelular, la homeostasis intracelular, la retroalimentación negativa (retroinhibición) y positiva (retroacción), el control por prealimentación, los compartimentos, la situación estable y el estado de equilibrio, la comunicación intercelular e intracelular, el control del sistema nervioso y el endocrino, la transducción de señales a través de la membrana celular y otras cascadas importantes de transducción de señales.
BASES DE LA REGULACIÓN FISIOLÓGICA
file:///C:/Users/Usuario/AppData/Local/Temp/Rar$EX06.624/ro%204/fisiomed4/text/part0007.html#s001
El organismo humano está formado por materiales muy complejos y delicados, y está sujeto constantemente a todo tipo de alteraciones, aunque prosigue su actividad durante toda la vida. Está claro que las condiciones y los procesos del organismo deben estar muy controlados y regulados, es decir, deben mantenerse dentro de los valores apropiados. Más adelante se analizará, en términos generales, la regulación fisiológica del organismo.
Un medio interno estable es esencial para el funcionamiento normal de la célula
Claude Bernard, fisiólogo francés del siglo xix, fue el primero en formular el concepto del medio interno (milieu intérieur). Señaló que un medio externo (aire o agua) rodea a los organismos multicelulares y que un medio interno líquido (líquido extracelular) rodea a las células que constituyen el organismo (fig. 1-1). Estas células no están expuestas directamente al mundo exterior, sino que interactúan con él a través del medio que las rodea, que es renovado de manera continua por la sangre circulante.
En los animales, para que la función de células, tejidos y órganos sea óptima, diversas variables del medio interno deben mantenerse dentro de unos límites estrechos. Entre ellas se encuentran:1) la presión parcial o tensión de oxígeno y de dióxido de carbono; 2) las concentraciones de glucosa y de otros metabolitos; 3) la presión osmótica; 4) las concentraciones de los iones hidrógeno, potasio, calcio y magnesio, y 5) la temperatura. La desviación de las condiciones óptimas puede causar una disfunción, una enfermedad o la muerte. Bernard afirmaba: «La estabilidad del medio interno es la condición principal para una existencia libre e independiente». Reconocía que la independencia de un animal respecto a las condiciones externas cambiantes se relaciona con su capacidad de mantener un medio interno relativamente constante. Un buen ejemplo es la capacidad de los animales de sangre caliente para vivir en zonas con diferente clima. En muy diversas condiciones de temperatura externa, la temperatura central de los mamíferos se mantiene constante gracias a mecanismos fisiológicos y conductuales. Esta estabilidad proporciona gran flexibilidad y tiene un valor obvio en cuanto a la supervivencia.

La homeostasis es el mantenimiento de condiciones estables en el organismo mediante mecanismos fisiológicos coordinados
Para mantener la estabilidad de su medio interno, es fundamental la coordinación precisa de importantes mecanismos reguladores del organismo. El afamado fisiólogo Walter B. Cannon captó el espíritu de la capacidad del organismo para regularse a sí mismo al definir el término homeostasis como el mantenimiento de condiciones estables en el organismo mediante mecanismos fisiológicos coordinados.
Para entender y analizar las condiciones normales y patológicas que se producen en el organismo, es necesario comprender el concepto de homeostasis. Para funcionar de forma óptima bajo diversas condiciones, el organismo debe percibir las desviaciones de la normalidad y ser capaz de activar mecanismos que restablezcan las condiciones fisiológicas normales. Estas desviaciones respecto a las condiciones normales pueden ser por exceso o por defecto, por lo que existen mecanismos para oponerse a los cambios que tienen lugar en cualquiera de estos sentidos. Por ejemplo, si la concentración de glucosa en sangre (glucemia) es demasiado baja, las células α del páncreas secretan una hormona, el glucagón, y la médula suprarrenal secreta adrenalina para aumentar la glucemia. Si la glucemia es demasiado elevada, las células β pancreáticas liberan insulina para reducirla aumentando la captación, el almacenamiento y el metabolismo de la glucosa en las células. Las respuestas conductuales también contribuyen a mantener la homeostasis. Por ejemplo, una glucemia baja estimula los centros encefálicos del apetito, y esto induce al animal a buscar alimento.
La regulación homeostásica de una variable fisiológica suele abarcar diversos mecanismos adyuvantes que se activan al mismo tiempo o de forma sucesiva. Cuanto más importante es una variable, más numerosos y complicados son los mecanismos que intervienen para mantenerla en el valor adecuado. Cuando el organismo no puede restablecer los valores fisiológicos de las variables, en ocasiones se produce una enfermedad o la muerte. La capacidad de mantener los mecanismos homeostásicos varía a lo largo de toda la vida de cada persona; algunos mecanismos no están totalmente desarrollados al nacer y otros declinan con la edad. Por ejemplo, un recién nacido no puede concentrar la orina tanto como un adulto, por lo que tolera peor la carencia de agua. En lo que respecta a situaciones de estrés, como el esfuerzo o el cambio de tiempo, los adultos de edad avanzada las toleran peor que los adultos más jóvenes.
Homeostasis intracelular
El término homeostasis hace referencia habitualmente al líquido extracelular que baña los tejidos, pero también puede aplicarse a las condiciones que existen en el interior de las células. De hecho, el objetivo final de mantener un medio interno constante es promover la homeostasis intracelular; con este fin, las condiciones del citosol de las células están rigurosamente reguladas.
La infinidad de reacciones bioquímicas características de una célula deben regularse con gran precisión para aportar energía metabólica, y lograr la proporción adecuada de síntesis y degradación de los componentes celulares. Las reacciones metabólicas que tienen lugar en las células son catalizadas por enzimas, por lo que están sujetas a diversos factores que regulan la actividad enzimática o influyen en ella:
• En primer lugar, el producto final de las reacciones puede inhibir la actividad catalítica de las enzimas; este proceso se denomina inhibición por el producto final o retroinhibición. Este tipo de inhibición es un ejemplo del control por retroalimentación negativa (v. más adelante).
• En segundo lugar, determinadas proteínas reguladoras intracelulares, como la calmodulina, una proteína fijadora del calcio, pueden asociarse a enzimas para controlar su actividad.
• En tercer lugar, las enzimas pueden ser controladas por modificación covalente, como la fosforilación o la desfosforilación.
• En cuarto lugar, el medio iónico intracelular, incluidas la concentración de ión hidrógeno ([H+]), la potencia iónica y la concentración de ión calcio (Ca2+), influye en la estructura y la actividad de las enzimas.
La concentración de hidrogeniones, o pH, afecta a la carga eléctrica de los aminoácidos que constituyen una proteína, y esto a su vez influye en su configuración estructural y en las propiedades de unión o fijación. El pH, que indica la acidez o la alcalinidad, afecta a las reacciones químicas que se producen en las células y a la organización de las proteínas estructurales. Las células pueden regular su pH a través de mecanismos que amortiguan los hidrogeniones intracelulares y mediante la expulsión de H+ al líquido extracelular (v. cap. 2, Membrana plasmática, transporte de membrana y potencial de membrana en reposo, y cap. 24, Homeostasis acidobásica).
La estructura y la actividad de las proteínas celulares también se ven afectadas por la concentración de sales o fuerza iónica. La fuerza iónica del citosol depende del número total y de la carga de iones por unidad de volumen de agua intracelular. Las células pueden regular su fuerza iónica manteniendo la combinación adecuada de iones y de moléculas no ionizadas (p. ej., osmolitos orgánicos como el sorbitol). Muchas células usan el calcio como señal o «mensajero» intracelular para la activación enzimática, por lo que deben contar con mecanismos para regular el Ca2+citosólico. Las modificaciones temporales del Ca2+ del citosol intervienen en actividades fundamentales como la contracción muscular, la secreción de neurotransmisores, hormonas y enzimas digestivas, y la apertura o el cierre de los canales iónicos. En las células en reposo, la concentración de Ca2+ citosólico es baja (de aproximadamente 10–7 M) y muy inferior a la concentración de Ca2+ en el líquido extracelular (unos 2,5 mM). El Ca2+ del citosol está regulado por la unión del calcio a proteínas intracelulares; el transporte está regulado por bombas de calcio dependientes del trifosfato de adenosina (ATP) situadas en las mitocondrias y en otros orgánulos (p. ej., el retículo sarcoplásmico en el músculo), y la expulsión del calcio está regulada por intercambiadores de Na+ y Ca2+ y por bombas de calcio de la membrana celular (v. cap. 2). Las toxinas o la disminución de la producción de ATP pueden hacer que la concentración de Ca2+ en el citosol sea anormalmente elevada, lo que puede provocar la hiperactivación de vías enzimáticas dependientes del calcio; las concentraciones elevadas de Ca2+ en el citosol pueden superar los mecanismos de regulación del calcio, con la consiguiente muerte celular.
La retroalimentación negativa promueve la estabilidad, y el control por prealimentación se anticipa a los cambios
Desde hace tiempo, se sabe que pueden conseguirse condiciones estables mediante sistemas de retroalimentación negativa (fig. 1-2). La retroalimentación es un flujo de información en un ciclo cerrado. Los componentes de un sistema simple de control por retroalimentación negativa son la variable regulada, un sensor (o detector), un controlador (o comparador) y un efector. Cada componente controla al siguiente. Pueden producirse diversas alteraciones dentro o fuera del sistema, y causar modificaciones no deseadas de la variable regulada. Mediante la retroalimentación negativa (o retroinhibición), la variable regulada se percibe, se envía información al controlador y el efector actúa para oponerse al cambio (de ahí que se la califique como negativa).
Un ejemplo familiar de un sistema de control por retroalimentación negativa es el control termostático de la temperatura ambiente. La temperatura ambiente (variable regulada) está sujeta a modificaciones; por ejemplo, desciende en un día frío. El termómetro (sensor) del termostato (controlador) detecta la temperatura ambiente. El termostato se ha ajustado a una temperatura determinada (punto de ajuste). El controlador compara la temperatura real (señal de retroalimentación) con la temperatura predeterminada, y se genera una señal de error si la temperatura ambiente desciende por debajo de esta temperatura predefinida. La señal de error activa la caldera (efector). Se controla la modificación resultante de la temperatura ambiente, y la caldera se apaga cuando la temperatura aumenta lo suficiente. Este sistema de retroalimentación negativa permite cierta fluctuación de la temperatura ambiente, pero los componentes actúan en conjunto para mantener la temperatura predeterminada. La comunicación eficaz entre el sensor y el efector es importante para lograr que estas oscilaciones sean mínimas.

Para mantener la homeostasis del organismo existen sistemas de retroalimentación negativa similares. Por ejemplo, el mantenimiento del agua y de las sales en el organismo se denominaosmorregulación o equilibrio hídrico. Durante el ejercicio, el equilibrio hídrico puede verse alterado como resultado de la pérdida de agua por el sudor. La pérdida de agua hace que aumente la concentración de sales en la sangre y los líquidos tisulares, y esto es percibido por células encefálicas como una retroalimentación negativa (v. cap. 23, Regulación de líquidos y equilibrio hidroelectrolítico). El encéfalo responde indicando a los riñones que reduzcan la secreción de agua y también aumentando la sensación de sed. Gracias a la reducción de la pérdida de agua en los riñones junto con el aumento de la ingesta de agua, la sangre y los líquidos tisulares recuperan la concentración osmótica correcta. Este sistema de retroalimentación negativa permite pequeñas fluctuaciones de las concentraciones de agua y sales en el organismo, pero actúa con rapidez para compensar las alteraciones a fin de restablecer condiciones osmóticas fisiológicamente aceptables.
El control por prealimentación es otra estrategia de los sistemas reguladores del organismo, en particular cuando se persigue un cambio con el tiempo. En este caso, se genera una orden que especifica la meta o el objetivo. El funcionamiento del controlador en cada momento se realiza en modo «ciclo abierto», es decir, no se percibe la variable regulada. Los mecanismos de control por prealimentación suelen percibir una alteración y pueden, por lo tanto, adoptar una medida correctiva que se anticipe a dicho cambio. Por ejemplo, la frecuencia cardíaca y la respiratoria aumentan incluso antes de que una persona comience a hacer un esfuerzo.
El control por prealimentación suele actuar en combinación con sistemas de retroalimentación negativa. Un ejemplo sería el acto de coger un lápiz. Los movimientos del brazo, de la mano y los dedos están regidos por la corteza cerebral (controlador por prealimentación); los movimientos son suaves y las fuerzas son apropiadas sólo en parte, debido a la retroalimentación de la información visual y la información sensitiva de receptores de las articulaciones y los músculos. Otro ejemplo de esta combinación tiene lugar durante el esfuerzo. Los ajustes respiratorios y cardiovasculares se adaptan mucho a la actividad muscular, de modo que las tensiones (la presión parcial de un gas en un líquido) de oxígeno y de dióxido de carbono en la sangre arterial apenas cambian cuando se realiza un esfuerzo casi agotador (v. cap. 21, Control de la ventilación). Una explicación de este destacable comportamiento es que el esfuerzo produce a la vez una señal de prealimentación generada centralmente y dirigida a los músculos activos, al aparato respiratorio y al cardiovascular; el control por prealimentación, junto con la información de retroalimentación que se genera como consecuencia del aumento del movimiento y de la actividad muscular, regula el corazón, los vasos sanguíneos y los músculos respiratorios. Además, la función del sistema de control puede adaptarse durante cierto tiempo. La experiencia anterior y el aprendizaje pueden modificar el rendimiento del sistema de control, de modo que funcione de forma más eficiente o apropiada.
Aunque los mecanismos de control homeostáticos suelen actuar en beneficio del organismo, a veces son deficientes, inapropiados o excesivos. Muchas enfermedades, como el cáncer, la diabetes o la hipertensión arterial, se deben a defectos en estos mecanismos de control. Por otro lado, los mecanismos homeostáticos alterados también pueden provocar enfermedades autoinmunitarias, en las que el sistema inmunitario ataca a los tejidos del propio organismo. La formación de una cicatriz es un ejemplo de un mecanismo homeostático importante para la curación de las heridas, aunque en muchas enfermedades crónicas, como la fibrosis pulmonar, la cirrosis hepática y la nefropatía intersticial, la formación de cicatrices no se produce adecuadamente y resulta excesiva.
La retroalimentación positiva promueve el cambio en una dirección
Con la retroalimentación positiva (retroactivación) se percibe una variable y se pone en marcha una acción para reforzar el cambio de dicha variable. El término «positiva» se refiere a que la respuesta actúa en el mismo sentido, causando un efecto acumulado o amplificado. La retroalimentación positiva no conduce a la estabilidad o la regulación, sino todo lo contrario: un cambio progresivo en una dirección. Un ejemplo de retroalimentación positiva en un proceso fisiológico es la sensación de la necesidad de orinar. A medida que la vejiga se llena, los mecanorreceptores vesicales son estimulados y el músculo liso de la pared vesical empieza a contraerse (v. cap. 23). A medida que la vejiga sigue llenándose y se distiende más, las contracciones aumentan y la necesidad de orinar es más imperiosa. En este ejemplo, al responder a la necesidad de orinar, se tiene una sensación de alivio inmediato al vaciar la vejiga, y esto es una retroalimentación positiva. Otro ejemplo de retroalimentación positiva se produce durante la fase folicular del ciclo menstrual. Los estrógenos, las hormonas sexuales femeninas, estimulan la liberación de hormona luteinizante (lutropina), que a su vez hace que los ovarios sinteticen más estrógenos. Esta retroalimentación positiva culmina en la ovulación (v. cap. 37, Aparato reproductor femenino). Un tercer ejemplo es la liberación de calcio inducida por el calcio que tiene lugar en las células musculares cardíacas con cada latido cardíaco. La despolarización de la membrana plasmática del músculo cardíaco causa una pequeña entrada de calcio a través de los canales de calcio de la membrana. Esto provoca una liberación explosiva de calcio de los orgánulos intracelulares, un aumento rápido de la concentración de calcio en el citosol y la activación de las estructuras contráctiles (v. cap. 13, Mecánica del músculo cardíaco y la bomba cardíaca). La retroalimentación positiva, cuando se descontrola, puede dar lugar a un círculo vicioso y a situaciones peligrosas. Por ejemplo, el corazón puede estar tan debilitado por la enfermedad que es incapaz de aportar el flujo sanguíneo adecuado al tejido muscular cardíaco. Esto provoca una mayor reducción de la capacidad de bombeo del corazón, disminuye más el flujo sanguíneo coronario y se deteriora más la función cardíaca. A veces, la tarea del médico consiste en interrumpir estos ciclos perjudiciales de retroalimentación positiva cíclica.
La situación estable y el estado de equilibrio son condiciones estables, pero se necesita energía para mantener una situación estable
Con frecuencia, la fisiología abarca el estudio de los intercambios de materia o energía entre diferentes espacios o compartimentos definidos, separados por algún tipo de estructura o membrana limitante. Dicho de forma simplista, el organismo puede dividirse en dos compartimentos, el líquido intracelular y el líquido extracelular, que están separados por las membranas plasmáticas de las células (fig. 1-3). El componente líquido del organismo representa un 60% del peso corporal total. El compartimento del líquido intracelular comprende casi dos terceras partes del agua del organismo, y está compuesto sobre todo por potasio y otros iones, además de proteínas. El compartimento del líquido extracelular es el tercio restante del agua corporal (cerca del 20% del peso); está formado por todos los líquidos corporales que se encuentran fuera de las células, e incluye el líquido intersticial que baña las células, la linfa, el plasma sanguíneo y líquidos especializados, como el líquido cefalorraquídeo. Es fundamentalmente una solución de cloruro sódico (NaCl) y carbonato sódico (NaHCO3), y puede dividirse en tres subcompartimentos: el líquido intersticial (linfa y plasma), el plasma que circula como componente extracelular de la sangre y el líquido transcelular, que es un conjunto de líquidos que se encuentran fuera de los compartimentos normales, como el líquido cefalorraquídeo, los jugos gástricos y el moco.

Cuando dos compartimentos se encuentran en equilibrio, las fuerzas opuestas están equilibradas, y no existe una transferencia neta de una sustancia concreta o de energía de un compartimento al otro. El equilibrio se produce cuando ha habido tiempo suficiente para el intercambio, y cuando no existe una fuerza impulsora, física o química, a favor del movimiento neto en una u otra dirección. En el pulmón, por ejemplo, el oxígeno de los espacios alveolares difunde hacia la sangre de los capilares pulmonares hasta que se alcanza en ambos compartimentos la misma tensión de oxígeno. En el organismo, suele existir un equilibrio osmótico entre las células y el líquido extracelular debido a que la mayoría de las membranas celulares son muy permeables al agua. Si no se altera, una situación de equilibrio se mantiene estable. No es necesario gastar energía para mantener un estado de equilibrio.
En ocasiones, se confunden el equilibrio y la situación estable. Una situación estable es simplemente una situación que no cambia con el transcurso del tiempo. Indica que la cantidad o la concentración de una sustancia en un compartimento son constantes. En la situación estable, no existe una ganancia neta ni una pérdida neta de una sustancia en un compartimento. Tanto la situación estable como el estado de equilibrio sugieren condiciones estables, pero la situación estable no indica necesariamente una situación de equilibrio, y puede necesitarse cierto gasto de energía para mantenerla. Por ejemplo, en la mayoría de las células del organismo existe una situación estable en lo que se refiere a los iones de sodio (Na+); la cantidad de Na+ que entra y sale de las células por unidad de tiempo es idéntica. Sin embargo, las concentraciones intracelular y extracelular de Na+ distan mucho de estar en equilibrio. La concentración extracelular de Na+ es mucho mayor que la concentración intracelular, y el Na+ tiende a entrar en las células siguiendo el gradiente de concentración y el gradiente eléctrico. La célula utiliza continuamente energía metabólica para expulsar Na+ de la célula, a fin de mantener a ésta en una situación estable con respecto a los iones Na+. En los sistemas vivos, las condiciones se apartan a menudo del equilibrio por el gasto constante de energía metabólica.
En la figura 1-4 se ilustran las diferencias entre la situación estable y el estado de equilibrio. En la figura 1-4 A, el nivel del líquido en el tanque es constante (situación estable) debido a que los flujos de entrada y de salida son iguales. Si aumentara el flujo de entrada (grifo abierto), el nivel del líquido se incrementaría, y con el tiempo se alcanzaría una nueva situación estable en un nivel superior. En la figura 1-4 B, los líquidos de los compartimentos X e Y no están en equilibrio (los niveles del líquido son diferentes), pero el sistema es un todo, y cada compartimento se encuentra en una situación estable debido a que la entrada y la salida son iguales. En la figura 1-4 C, el sistema se encuentra en una situación estable, y los compartimentos X e Y están en equilibrio. Obsérvese que el término situación estable puede aplicarse a un solo compartimento o a varios; el término equilibrio describe la relación entre al menos dos compartimentos adyacentes que pueden intercambiar materia o energía entre sí.

La actividad corporal coordinada necesita la integración de numerosos sistemas
Las funciones corporales pueden analizarse en relación con diversos sistemas y aparatos, como el nervioso, muscular, cardiovascular, respiratorio, renal, digestivo y endocrino. No obstante, estas divisiones son más bien arbitrarias, y todos los sistemas interactúan y dependen unos de otros. Por ejemplo, el hecho de caminar implica la actividad de muchos sistemas aparte del aparato locomotor. El sistema nervioso coordina los movimientos de las extremidades y del cuerpo, estimula los músculos para que se contraigan, y percibe la tensión muscular y la posición de las extremidades. El sistema cardiovascular conduce la sangre a los músculos, aportando nutrientes y eliminando los desechos metabólicos y el calor. El aparato respiratorio aporta oxígeno y elimina el dióxido de carbono. El sistema renal mantiene la composición óptima de la sangre. El aparato digestivo aporta metabolitos que proporcionan energía. El sistema endocrino ayuda a regular el flujo sanguíneo y el aporte de diversos sustratos metabólicos a los músculos activos. La actividad corporal coordinada precisa de la integración de muchos sistemas y aparatos.
En investigaciones recientes, se ha demostrado que muchas enfermedades pueden explicarse si se tiene en cuenta la alteración de la función en el nivel molecular. Estas investigaciones han supuesto un enorme avance en el conocimiento de las funciones celulares normales y anómalas. Sin embargo, las enfermedades aparecen en el contexto de un organismo completo, y es importante comprender de qué modo las células, los tejidos, los órganos y los sistemas orgánicos responden a un trastorno (proceso patológico) e interactúan. El dicho «El todo es más que la suma de las partes» ciertamente se aplica a lo que ocurre en los organismos vivos. La ciencia de la fisiología afronta el desafío único de intentar dar sentido a las complejas interacciones que se producen en el organismo. Es evidente que conocer los procesos y las funciones del organismo es fundamental para la investigación biomédica y la medicina.
TIPOS DE COMUNICACIÓN Y SEÑALIZACIÓN
El cuerpo humano cuenta con diversos medios para transmitir información entre las células. Entre estos mecanismos se encuentran la comunicación directa entre células adyacentes a través de uniones comunicantes, la señalización autocrina y paracrina, y la liberación de neurotransmisores y hormonas (sustancias químicas con funciones reguladoras) producidas por células endocrinas y nerviosas (fig. 1-5).
Las uniones comunicantes proporcionan una vía para la comunicación directa entre células adyacentes
Las células adyacentes se comunican a veces directamente entre sí a través de uniones comunicantes (uniones gap), que son canales proteicos especializados que se encuentran en la membrana plasmática de las células y están formados por una proteína, la conexina (fig. 1-6). Seis conexinas se unen en la membrana plasmática de una célula para formar un hemiconducto, denominadoconexón. Dos conexones alineados entre dos células vecinas se unen por los extremos para formar un conducto intercelular entre las membranas plasmáticas de células adyacentes. Las uniones comunicantes permiten el flujo de iones (por lo tanto, una corriente eléctrica) y de moléculas pequeñas entre el citosol de células vecinas (fig. 1-5). Estas uniones son fundamentales para la función de muchos tejidos, y permiten la transmisión rápida de señales eléctricas entre células cardíacas, células musculares lisas y algunas células nerviosas vecinas; también pueden conectar funcionalmente células epiteliales adyacentes. Se considera que las uniones comunicantes intervienen en el control del crecimiento y la diferenciación de las células, ya que permiten que células adyacentes compartan un medio intracelular común. Cuando una célula se daña, es frecuente que las uniones comunicantes se cierren, aislando así la célula lesionada de sus vecinas. Este proceso de aislamiento puede hacer que aumente el calcio o disminuya el pH en el citosol de la célula dañada.


Las células se comunican localmente mediante señalización paracrina y autocrina
Las células pueden transmitir señales a otras células a través de la liberación local de sustancias químicas. Este medio de comunicación no depende de un sistema vascular. En la señalización paracrina, una sustancia química se libera de una célula y difunde una corta distancia a través del líquido extracelular para actuar en células cercanas. Los factores de la señalización paracrina afectan sólo al entorno inmediato y se unen con gran especificidad a receptores celulares situados en la membrana plasmática de la célula receptora. También son destruidos con rapidez por enzimas extracelulares o se unen a la matriz extracelular, lo que impide que difundan más. El óxido nítrico (NO), al que originalmente se denominó factor relajante derivado del endotelio, es un ejemplo de molécula de señalización paracrina, dado que tiene una semivida intrínsecamente breve y, por lo tanto, puede afectar a células situadas junto a la célula productora de NO. Aunque la mayoría de las células pueden producir NO, éste desempeña importantes funciones en la regulación del tono del músculo liso vascular, la facilitación de las actividades de neurotransmisión del sistema nervioso central (SNC) y la modulación de las respuestas inmunitarias (v. cap. 15, Microcirculación y sistema linfático, y cap. 26, Secreción, digestión y absorción gastrointestinales). La producción de NO se debe a la activación de la óxido nítrico sintasa (NOS), que desamina la arginina para dar citrulina (fig. 1-7). El NO, producido por las células endoteliales, regula el tono vascular mediante la difusión desde la célula endotelial a la célula muscular lisa vascular subyacente, donde activa su diana efectora, la guanilato ciclasa, una enzima citoplásmica. La activación de la guanilato ciclasa citoplásmica o soluble hace que aumente la concentración intracelular de monofosfato de guanosina cíclico (GMPc) y la activación de la proteína cinasa dependiente del GMPc, también conocida como proteína cinasa G. Esta enzima fosforila posibles sustratos diana, como las bombas de calcio del retículo sarcoplásmico o sarcolema, con la consiguiente reducción de la concentración citoplásmica de calcio. Esto desactiva, a su vez, el sistema contráctil de las células musculares lisas vasculares, y produce relajación o una disminución del tono (v.caps. 8, Músculo esquelético y liso, y 15).
Por el contrario, durante la señalización autocrina, la célula libera al líquido extracelular un mensajero químico que se une a un receptor de la superficie de la célula que lo secretó (v. fig. 1-5). Los eicosanoides (p. ej., prostaglandinas) son ejemplos de moléculas de señalización que pueden actuar de forma autocrina. Estas moléculas funcionan como hormonas locales e influyen en diversos procesos fisiológicos, como la contracción del músculo liso uterino durante el embarazo.
El sistema nervioso proporciona una comunicación rápida y focalizada
El SNC está formado por el encéfalo y la médula espinal, que une el SNC con el sistema nervioso periférico (SNP), que está compuesto por nervios o haces de fibras nerviosas. Juntos, el SNC y el SNP integran y coordinan un gran número de procesos sensitivos y respuestas motoras. Las funciones básicas del sistema nervioso son obtener información sensitiva del medio interno y externo, integrar esta información y luego activar una respuesta a los estímulos. La información sensitiva que llega al sistema nervioso puede ser muy diversa: sabor, sonido, pH sanguíneo, hormonas, equilibrio u orientación, presión o temperatura; esta información se convierte en señales que se envían al encéfalo o a la médula espinal. En los centros sensitivos encefálicos y medulares, las señales entrantes son integradas rápidamente y, a continuación, se crea una respuesta. En general, se trata de una respuesta motora, y se transmite una señal a los órganos y tejidos, donde se convierte en una acción, como un cambio de la frecuencia cardíaca, la sensación de sed, la liberación de hormonas o un movimiento físico. El sistema nervioso también está organizado para realizar actividades diferenciadas; tiene una cantidad enorme de «líneas privadas» para enviar mensajes de un lugar concreto a otro. La conducción de la información a lo largo de los nervios se produce mediante señales eléctricas, denominadas potenciales de acción, y la transmisión de señales entre nervios o entre los nervios y estructuras efectoras tiene lugar en la sinapsis. En la transmisión sináptica interviene casi siempre la liberación de sustancias químicas o neurotransmisores específicos desde las terminaciones nerviosas (v. fig. 1-5). Las células inervadas tienen moléculas proteicas especializadas (receptores) en su membrana, que se unen específicamente a los neurotransmisores. Cuando la transmisión nerviosa es insuficiente o está alterada, las consecuencias son importantes. Por ejemplo, en la enfermedad de Parkinson, existe una deficiencia de un neurotransmisor, la dopamina, debida a la pérdida progresiva de neuronas secretoras de dopamina, lo que causa una alteración cognitiva (p. ej., un aumento del tiempo de reacción) y una alteración motora (p. ej., temblores). En el capítulo 3 se expondrán las acciones de diversos neurotransmisores, y el modo en que son sintetizados y degradados. En los capítulos 4 a 6 se abordará el papel del sistema nervioso en la coordinación y el control de las funciones corporales.

La comunicación a través del sistema endocrino es más lenta y más difusa
En respuesta a diversos estímulos, el sistema endocrino produce hormonas, que desempeñan un papel importante en el establecimiento y el mantenimiento de la homeostasis en el organismo. A diferencia de los efectos rápidos y focalizados resultantes de la estimulación neuronal, las respuestas a las hormonas tardan mucho más en empezar (segundos a horas), y los efectos suelen durar más. Las hormonas son secretadas por las glándulas endocrinas y los tejidos, y se distribuyen por todo el organismo a través del torrente circulatorio (v. fig. 1-5). Una célula determinada sólo puede responder a una hormona si posee el receptor apropiado para ésta. Los efectos hormonales también pueden ser focalizados. Por ejemplo, la vasopresina (hormona antidiurética, ADH) aumenta de manera específica la permeabilidad al agua de las células de los túbulos colectores renales, pero no altera la permeabilidad al agua de otras células. Los efectos hormonales también pueden ser difusos e influir prácticamente en todas las células del organismo. Por ejemplo, la tiroxina tiene un efecto estimulante general del metabolismo. Las hormonas desempeñan un papel fundamental en el control de funciones corporales como el crecimiento, el metabolismo y la reproducción.
Dopamina y enfermedad de Parkinson
La enfermedad de Parkinson es un trastorno degenerativo del sistema nervioso central que empeora gradualmente, afectando a las funciones motoras y el habla. Esta enfermedad se caracteriza por rigidez muscular, temblores y lentitud de movimientos, síntomas causados por una contracción muscular excesiva, debida a la insuficiencia de dopamina, un neurotransmisor producido por las neuronas dopaminérgicas del encéfalo. Los síntomas se deben a la pérdida de células secretoras de dopamina situadas en una región del encéfalo que regula el movimiento. La pérdida de dopamina en esta zona hace que otras neuronas se descontrolen, con la consiguiente incapacidad para controlar o dirigir los movimientos de forma normal. No existe cura para esta enfermedad; pese a que se han desarrollado diversos fármacos para tratar los síntomas de estos pacientes, estos fármacos no detienen la enfermedad. El más utilizado es la levodopa (L-DOPA), un precursor sintético de la dopamina. La LDOPA es captada en el encéfalo y transformada en dopamina, lo que permite que el paciente recupere cierto control de la movilidad. Otros fármacos, como la carbidopa, la entacapona y la selegilina, inhiben la degradación de la dopamina y suelen administrarse en combinación con la LDOPA. Una línea de investigación polémica, que podría aportar una cura para esta devastadora enfermedad, consiste en el uso de células progenitoras embrionarias, que son células indiferenciadas que se obtienen de embriones; los científicos creen que pueden estimular estas células para que se diferencien y den lugar a neuronas que puedan reemplazar a las que se pierden durante la progresión de esta enfermedad. Otros enfoques científicos se centran en el conocimiento de los mecanismos moleculares y bioquímicos por los que se pierden neuronas dopaminérgicas. Gracias a la mayor comprensión de estos procesos, se están diseñando tratamientos neuroprotectores.
Existen células que no son células endocrinas habituales y producen una categoría especial de mensajeros químicos, denominados factores de crecimiento tisular. Estos factores de crecimiento son moléculas proteicas que influyen en la división, la diferenciación y la supervivencia de las células, y pueden ejercer sus efectos de forma autocrina, paracrina o endocrina. Se han identificado muchos factores de crecimiento, y es probable que en los próximos años se reconozcan muchos más. El factor de crecimiento neuronal potencia el desarrollo de las neuronas y estimula el crecimiento de los axones. El factor de crecimiento epidérmico (EGF, epidermal growth factor) estimula el crecimiento de células epiteliales que se encuentran en la piel y en otros órganos. El factor de crecimiento derivado de las plaquetas estimula la proliferación de las células musculares lisas y endoteliales de los vasos. Los factores de crecimiento similares a la insulina estimulan la proliferación de una amplia variedad de células e intervienen en muchos de los efectos de la somatotropina (hormona del crecimiento). Los factores de crecimiento parecen ser importantes en el desarrollo de los organismos multicelulares, y en la regeneración y la reparación de los tejidos lesionados.
Los sistemas de control nervioso y endocrino se superponen
La distinción entre los sistemas de control nervioso y endocrino no siempre está clara. Esto se debe a que el sistema nervioso controla la función de las glándulas endocrinas, la mayoría de las cuales, si no todas, están inervadas por el SNP, y estos nervios pueden controlar directamente la función endocrina de la glándula. Además, la inervación de los tejidos endocrinos también puede regular el flujo sanguíneo en la glándula, lo que en ocasiones repercutirá en la distribución de la hormona y, por lo tanto, en su función. Por otro lado, las hormonas pueden afectar al SNC y alterar el comportamiento y el estado de ánimo. A esta relación tan integrada se añade la presencia de células nerviosas especializadas, denominadas células neuroendocrinas o neurosecretoras, que convierten directamente una señal nerviosa en una señal hormonal. Estas células convierten directamente la energía eléctrica en energía química, y su activación provoca la secreción de hormonas. Ejemplos de ello son las neuronas hipotalámicas que secretan factores de liberación que controlan la secreción del lóbulo anterior de la hipófisis (adenohipófisis), y las neuronas hipotalámicas que secretan ADH y oxitocina al torrente circulatorio. Además, en las terminaciones nerviosas se han encontrado muchos neurotransmisores, posibles o confirmados, que son también hormonas, como la ADH, la colecistocinina, las encefalinas, la noradrenalina, la secretina y el péptido intestinal vasoactivo. En consecuencia, a veces es difícil clasificar una sustancia concreta como hormona o neuro transmisor.
BASES MOLECULARES DE LA SEÑALIZACIÓN CELULAR
Las células se comunican entre sí a través de numerosos y complejos mecanismos. Incluso en los organismos unicelulares, como las levaduras, el uso de pequeños péptidos denominadosferomonas para coordinar la reproducción sexual da lugar a células haploides con una nueva dotación de genes. El estudio de la comunicación intercelular ha permitido identificar muchos sistemas de señalización complejos que el organismo utiliza para integrar y coordinar funciones. Estos estudios han demostrado también que estas vías de señalización deben estar estrechamente reguladas para que se mantenga la homeostasis celular. La alteración de estas vías de señalización puede transformar el crecimiento celular normal en una proliferación celular descontrolada o cáncer.
La transducción de señales son los mecanismos por los cuales los primeros mensajeros de las células transmisoras pueden convertir su información en un segundo mensajero dentro de las células receptoras. Los sistemas de señalización constan de receptores, que se encuentran en la membrana plasmática o dentro de las células, y son activados por diversas señales extracelulares o primeros mensajeros, como péptidos, hormonas y factores de crecimiento proteicos, esteroides, iones, productos metabólicos, gases y diversos agentes químicos o físicos (p. ej., la luz). Los sistemas de señalización también están formados por transductores y efectores, que intervienen en la conversión de la señal en una respuesta fisiológica. Esta vía puede incluir otros mensajeros intracelulares, denominados segundos mensajeros (fig. 1-8). Entre estos segundos mensajeros se encuentran nucleótidos cíclicos como el monofosfato de adenosina cíclico (AMPc) y el GMPc, lípidos como el 1,4,5-trifosfato de inositol (IP3) y el diacilglicerol (DAG), iones como el calcio, y gases como el NO y el monóxido de carbono (CO). A grandes rasgos, una cascada de señalessería como se indica a continuación. La transducción de señal comienza por la unión de un primer mensajero a su lugar apropiado de unión del ligando situado en el dominio superficial externo del receptor de membrana correspondiente. Esto activa el receptor, que puede adoptar una nueva conformación, formar agregados (multimerización), fosforilarse o desfosforilarse. Estos cambios suelen producirse asociados a moléculas de señalización adaptadoras que acoplan el receptor activado con moléculas de fases posteriores de la vía, que transmiten y amplifican la señal a través de la célula al activar moléculas efectoras específicas y generar un segundo mensajero. El resultado de la cascada de señalización es una respuesta fisiológica, como la secreción, el movimiento, el crecimiento, la división o la muerte. Es importante recordar que estas respuestas fisiológicas son el resultado conjunto de una multitud de mensajeros de señalización que transmiten señales a las células de diversos tejidos.

Los receptores de la membrana plasmática activan las vías de transducción de señales
Como se ha mencionado antes, las moléculas producidas por una célula para actuar en sí misma (señalización autocrina) o en otras células (señalización paracrina, neural o endocrina) son ligandos o primeros mensajeros. Muchos de estos ligandos se unen directamente a proteínas receptoras que se encuentran en la membrana plasmática, y se extienden por el exterior y el interior de dicha membrana. Otros ligandos atraviesan la membrana plasmática e interactúan con receptores celulares situados en el citoplasma o en el núcleo. Por consiguiente, los receptores celulares se dividen en dos tipos fundamentales: receptores de la superficie celular y receptores intracelulares. Se han identificado tres clases generales de receptores de la superficie celular: receptores acoplados a proteínas G, receptores vinculados a canales iónicos y receptores vinculados a enzimas. Entre los receptores intracelulares se encuentran los receptores de esteroides y hormonas tiroideas, que se comentan en un apartado posterior de este capítulo. Algunos de estos receptores de la superficie celular, aunque no todos, pueden encontrarse en estructuras organizadas que forman «microdominios» en la membrana plasmática. Estos microdominios especializados, las denominadas balsas lipídicas, se distinguen del resto de la membrana plasmática por su gran contenido en colesterol y esfingolípidos como la esfingomielina, siendo su contenido de fosfatidilcolina inferior al de la bicapa circundante. Las balsas lipídicas pueden actuar para compartimentar y organizar el ensamblaje de complejos de señalización. Su escasa fluidez y su rigidez les permiten «flotar» libremente en la bicapa de la membrana. Entre los receptores de membrana que pueden precisar de las balsas lipídicas para una transducción eficaz de las señales se encuentran el receptor del EGF, el receptor de la insulina, el receptor de antígenos de linfocitos B y el receptor de antígenos de linfocitos T. Diversos canales iónicos también necesitan las balsas lipídicas para funcionar de un modo eficiente.
Inhibidores de la tirosina cinasa para el tratamiento de la leucemia mielógena crónica
El cáncer puede deberse a defectos en moléculas de señalización fundamentales que regulan muchas propiedades celulares, como la proliferación, la diferenciación y la supervivencia. Las proteínas reguladoras celulares normales codificadas por protooncogenes pueden sufrir alteraciones debidas a mutación o expresarse de forma anómala cuando se desarrolla una neoplasia maligna. Los oncogenes, genes anómalos que en muchos casos tienen su origen en protooncogenes, codifican proteínas de transducción de señales que normalmente intervienen en la regulación de la proliferación celular. Las moléculas de señalización que pueden hacerse oncogénicas abarcan toda la vía de transducción de señales, e incluyen ligandos (p. ej., factores de crecimiento), receptores, moléculas adaptadoras y efectoras, y factores de transcripción.
Existen muchos ejemplos del modo en que las proteínas celulares normales pueden convertirse en oncoproteínas. Uno de ellos se produce en la leucemia mielógena crónica (LMC), una enfermedad que se caracteriza por la proliferación clonal aumentada y descontrolada de las células mielógenas en la médula ósea. La LMC se debe a una anomalía cromosómica heredada que implica una translocación recíproca o un intercambio de material genético entre los cromosomas 9 y 22; fue la primera neoplasia maligna a la que se relacionó con una anomalía genética. Se denomina cromosoma Filadelfia a la anomalía cromosómica debida a la translocación; da lugar a la fusión del gen bcr, cuya función se desconoce, con parte del gen abl celular (c-abl). Este último codifica una proteína tirosina cinasa cuyos sustratos normales se desconocen. Esta proteína de fusión Bcr-Abl anómala (compuesta por partes fusionadas de bcr y c-abl) tiene una actividad tirosina cinasa no regulada; a través de los dominios de unión SH2 y SH3 de la parte Abl de la proteína, la proteína mutante se une al receptor 3β(c) de la interleucina y lo fosforila. Este receptor está relacionado con el control de la proliferación celular. La expresión de la proteína Bcr-Abl no regulada activa las vías de señalización que activan la progresión del ciclo celular, lo que acelera la división celular.
La translocación cromosómica que da lugar a la formación de la oncoproteína Bcr-Abl se produce durante el desarrollo de las células madre hematopoyéticas o hemocitoblastos; la presencia de un cromosoma Filadelfia (cromosoma 22 más corto de lo normal) es característica de esta neoplasia maligna. La translocación causa inicialmente una LMC, que se caracteriza por una leucocitosis (aumento del número de leucocitos circulantes) progresiva y por la presencia de células blásticas inmaduras circulantes. Sin embargo, en ocasiones se producen de manera espontánea mutaciones secundarias en la célula madre mutante, y pueden dar lugar a una leucemia aguda, una enfermedad que progresa con rapidez y que con frecuencia es mortal.
Anteriormente, la LMC se trataba con quimioterapia, interferón y trasplante de médula ósea. Más recientemente, el conocimiento de las moléculas y las vías de señalización que dan lugar a esta neoplasia maligna devastadora ha llevado a concebir estrategias terapéuticas dirigidas para mitigar esta enfermedad. A tal fin, se ha desarrollado un fármaco que inhibe la actividad tirosina cinasa: el mesilato de imatinib. Aunque el tratamiento de los pacientes con LMC con este fármaco no erradica la enfermedad, puede limitar en gran medida el desarrollo de clones tumorales y mejorar la calidad y la esperanza de vida del paciente.
Los receptores acoplados a proteínas G transmiten señales a través de proteínas G triméricas
Los receptores acoplados a proteínas G (GPCR, G protein-coupled receptors) constituyen la mayor familia de receptores de la superficie celular, formada por más de mil miembros. Estos receptores regulan indirectamente sus dianas efectoras (que pueden ser canales iónicos o enzimas efectoras unidas a la membrana) a través de la actividad intermedia de un complejo proteico adaptador unido a la membrana, denominado proteína trimérica reguladora fijadora de trifosfato de guanosina o proteína G trimérica (fig. 1-9). Los GPCR intervienen en las respuestas celulares a numerosos tipos de primeros mensajeros, como proteínas, péptidos pequeños, aminoácidos y derivados de ácidos grasos. Muchos ligandos o primeros mensajeros pueden activar varios GPCR distintos; por ejemplo, la serotonina puede activar al menos 15 GPCR diferentes.
Los GPCR son moléculas similares desde el punto de vista estructural y funcional. Tienen un dominio extracelular de fijación al ligando en un extremo de la molécula, que está separado por una región de siete dominios transmembrana desde el dominio regulador citosólico del otro extremo, donde el receptor interactúa con la proteína G unida a la membrana. La fijación de un ligando u hormona al dominio extracelular causa un cambio de conformación del receptor que se transmite al dominio regulador citosólico. Este cambio de conformación permite la asociación del receptor activado unido al ligando con una proteína G trimérica asociada a la lámina interna de la membrana plasmática. A su vez, esta interacción activa la proteína G, que se disocia del receptor y transmite la señal a su enzima efectora (p. ej., la adenilato ciclasa) o a un canal iónico.
Las proteínas G triméricas reciben su nombre por su necesidad de unión al trifosfato de guanosina (GTP) y la hidrólisis; se ha demostrado que desempeñan un amplio papel en la unión de diversos receptores con siete dominios transmembrana a sistemas efectores unidos a la membrana que dan lugar a mensajeros intracelulares. Las proteínas G están ancladas a la membrana a través de una unión lipídica y son heterotriméricas, es decir, están compuestas por tres subunidades diferentes. Las subunidades de una proteína G son una subunidad α, que se une al GTP y lo hidroliza, y las subunidades β y γ, que forman un dímero βγ estable unido de forma no covalente. Cuando la subunidad α se une al difosfato de guanosina (GDP), se asocia a las subunidades βγ para formar un complejo trimérico que puede interactuar con el dominio citoplásmico de los GPCR. El cambio de conformación que se produce al unirse el ligando hace que la proteína G trimérica (complejo αβγ) unida al GDP se asocie al receptor unido al ligando. La asociación del complejo trimérico unido al GDP con los GPCR activa el intercambio de GDP por GTP. En las células, el desplazamiento del GDP por el GTP está favorecido, puesto que la concentración de GTP es mayor. El desplazamiento del GDP por el GTP hace que la subunidad α se disocie del receptor y de las subunidades βγ de la proteína G. Esto expone un sitio de unión al efector situado en la subunidad α, que se asocia entonces a una enzima efectora (p. ej., la adenilato ciclasa o la fosfolipasa C) con la consiguiente producción de segundos mensajeros (p. ej., AMPc o IP3 y DAG). La hidrólisis del GTP para dar GDP, realizada por la subunidad α, provoca la nueva asociación de las subunidades α y βγ, que ya están preparadas para repetir el ciclo.
El cambio cíclico de la forma inactiva (unida al GDP) y de la forma activa (unida al GTP) de las proteínas G hace que se las incluya en la familia de los interruptores moleculares, que regulan muchos procesos bioquímicos. Cuando el interruptor está «apagado», el nucleótido unido es el GDP; cuando el interruptor está «encendido», la enzima hidrolítica (la proteína G) está unida al GTP, y la escisión del GTP para dar GDP hará que el interruptor vuelva a estar «apagado». Aunque la mayor parte de la transducción de señales que realizan las proteínas G es el resultado de las actividades de la subunidad α, se está empezando a descubrir una función de las subunidades βγ en efectores activadores durante la transducción de señales. Por ejemplo, las subunidades βγ pueden activar los canales de K+. Por lo tanto, tanto la subunidad α como la βγ intervienen en la regulación de las respuestas fisiológicas.

La actividad catalítica de una proteína G trimérica, que es la hidrólisis del GTP para dar GDP, reside en su subunidad Gα. Cada subunidad Gα de esta gran familia de proteínas tiene una capacidad intrínseca de hidrólisis del GTP. La actividad catalítica intrínseca de las proteínas G es un factor importante que contribuye a la amplificación de la señal producida por la unión de una sola molécula del ligando a un GPCR. Por ejemplo, una subunidad Gα que se mantiene activa durante más tiempo (hidrólisis de GTP más lenta) continuará activando su efector durante un período más prolongado, y esto hará que la producción del segundo mensajero sea mayor.
Las proteínas G acoplan funcionalmente a los receptores con diversas moléculas efectoras diferentes. Dos importantes moléculas efectoras que son reguladas por las subunidades de las proteínas G son la adenilato ciclasa y la fosfolipasa C. La asociación de una subunidad Gα activada con la adenilato ciclasa puede estimular o inhibir la producción de AMPc. Esta disparidad se debe a los dos tipos de subunidad α que pueden acoplar la adenilato ciclasa con receptores de la superficie celular. La asociación de una subunidad αe (estimulante) promueve la activación de la adenilato ciclasa y la producción de AMPc. La asociación de una subunidad αi (inhibidora) provoca la inhibición de la adenilato ciclasa y la reducción del AMPc. Por lo tanto, la regulación bidireccional de la adenilato ciclasa se logra al acoplar diferentes clases de receptores de la superficie celular a la enzima, ya sea por proteínas Ge o Gi (fig. 1-10).
Además de las subunidades αe y αi, se han descrito otras isoformas de las subunidades de las proteínas G, como la subunidad αq, que activa a la fosfolipasa C, con la consiguiente producción de los segundos mensajeros DAG y trifosfato de inositol. Otra subunidad Gα, la αT o transducina, se expresa en tejidos fotorreceptores y desempeña una función importante en la transducción de señales en las células fotorreceptoras de la retina, los bastones, mediante la activación de la GMPc-fosfodiesterasa, efector que convierte el GMPc en 5’GMP (v. cap. 4, Fisiología sensitiva). Las tres subunidades de las proteínas G pertenecen a grandes familias que se expresan en diferentes combinaciones en distintos tejidos. La distribución tisular influye en la especificidad de la señal transmitida y en el segundo mensajero que se produce.
Los receptores vinculados a canales iónicos intervienen en algunas formas de señalización celular regulando la concentración intracelular de iones específicos
Los canales iónicos, que se encuentran en todas las células, son proteínas transmembrana que atraviesan la membrana plasmática y participan en la regulación del paso de iones específicos hacia el interior o el exterior de las células. Los canales iónicos pueden abrirse o cerrarse al cambiar el potencial de membrana o por la unión de ligandos, como neurotransmisores u hormonas, a receptores de la membrana. En algunos casos, el receptor y el canal iónico son la misma molécula. Por ejemplo, en la unión neuromuscular, el neurotransmisor acetilcolina se une a un receptor colinérgico nicotínico de la membrana muscular, que es también un canal iónico. En otros casos, el receptor y el canal iónico se relacionan a través de una proteína G, segundos mensajeros y otras moléculas efectoras subsiguientes, como en el receptor colinérgico muscarínico situado en células inervadas por fibras nerviosas posganglionares parasimpáticas. Otra posibilidad es que el canal iónico sea activado directamente por un nucleótido cíclico, como el GMPc o el AMPc, producido como consecuencia de la activación del receptor. Este tipo de control de los canales iónicos se encuentra predominantemente en los tejidos relacionados con los sentidos de la vista, el olfato y el oído, y de otros tejidos, como el músculo liso de los vasos sanguíneos. La apertura o el cierre de los canales iónicos desempeñan un papel fundamental en la señalización entre células excitables eléctricamente, como las nerviosas y musculares.

Los receptores con actividad tirosina cinasa señalizan a través de proteínas adaptadoras para activar la vía de la proteína cinasa activada por mitógenos
Muchas hormonas y factores de crecimiento (mitógenos) transmiten información a sus células diana uniéndose a una clase de receptores que tienen actividad tirosina cinasa, y que producen la fosforilación de residuos de tirosina del receptor y de otras proteínas diana. Muchos de los receptores de esta clase de receptores de la membrana plasmática tienen un dominio tirosina cinasa intrínseco que forma parte de la región citoplásmica del receptor (fig. 1-11). Otro grupo de receptores relacionados carecen de una tirosina cinasa intrínseca, pero cuando se activan, se asocian a una tirosina cinasa citoplásmica. Ambas familias de receptores tirosina cinasa utilizan vías similares de transducción de señales, y se comentarán conjuntamente.
Relación del óxido nítrico y la fosfodiesterasa con la angina de pecho, la hipertensión pulmonar y la disfunción eréctil
Una fosfodiesterasa (FDE) es una enzima que hidroliza un enlace fosfodiéster. Las FDE de nucleótidos cíclicos son particularmente importantes en la clínica, ya que controlan las concentraciones celulares de los segundos mensajeros, el AMPc y el GMPc, y las vías de transducción de señales moduladas por estas moléculas. Se ha identificado una gran familia de FDE de nucleótidos cíclicos, que se clasifican según su secuencia, regulación, especificidad por el sustrato y distribución tisular. Algunas FDE se expresan de forma específica según el tejido, y esto representa la oportunidad de actuar en una FDE específica con un fármaco inhibidor o activador.
En el tratamiento de la angina de pecho (dolor torácico intenso debido a un aporte sanguíneo insuficiente al tejido cardíaco), generalmente se utilizaban los nitratos, que reducen la demanda de oxígeno del miocardio. Los nitratos actúan como una fuente exógena de óxido nítrico (NO), que puede estimular a las guanilato ciclasas solubles y aumentar la concentración celular de GMPc. La formación de GMPc transmite una señal que provoca la relajación del músculo liso vascular de las arterias y las venas. El efecto beneficioso de los nitratos en el tratamiento de la isquemia miocárdica es la dilatación de las venas, lo que permite que la sangre vaya desde el interior de los ventrículos hasta los tejidos periféricos. Esto reduce la tensión cardíaca, lo que disminuye la demanda de oxígeno del miocardio. Aunque los nitratos aportan una solución relativamente fácil, un efecto secundario frecuente es la taquifilaxia, es decir, la reducción de la respuesta al fármaco cuando se administra a largo plazo. La búsqueda de nuevos fármacos para tratar la angina de pecho y otras enfermedades cardiovasculares similares llevó al descubrimiento del sildenafilo. El sildenafilo es un inhibidor bastante selectivo de la FDE-5, y su administración aumenta la concentración de GMPc en las células musculares lisas vasculares, lo que causará vasodilatación. Por desgracia, la semivida relativamente breve redujo la utilidad de este fármaco como tratamiento práctico de la angina de pecho crónica. Además, durante los ensayos clínicos se observaron diversos efectos secundarios, como la capacidad del sildenafilo de aumentar los efectos vasodilatadores de los nitratos. Otro efecto secundario interesante y frecuente que se observó fue la erección peniana, y en ensayos clínicos posteriores se validó su uso como tratamiento eficaz de la disfunción eréctil.
La disfunción eréctil se debe a muchas causas, como trastornos psicológicos (p. ej., la depresión) y numerosas afecciones clínicas (entre las más frecuentes se encuentran las vasculopatías, la diabetes, enfermedades neurológicas como las lesiones medulares, la esclerosis múltiple y la enfermedad de Parkinson, así como muchas afecciones inflamatorias). Durante la estimulación sexual, las arterias cavernosas del pene se relajan y dilatan, permitiendo así que fluya la sangre. Este aumento del volumen sanguíneo y la compresión del músculo trabecular causan el colapso y la obstrucción del flujo de salida venoso y se produce una erección. Dado que el NO es el principal mediador de la relajación del músculo liso, es esencial para que se produzca una erección. El NO activa a la guanilato ciclasa soluble, haciendo que aumente la síntesis de GMPc. Las concentraciones celulares de GMPc reflejan el equilibrio de actividad entre la producción de NO por parte de la NO sintetasa y la degradación del GMPc por una FDE cíclica. Así pues, el uso de un inhibidor transitorio de la FDE-5, la principal FDE de las arterias cavernosas y el músculo trabecular, produce una vasodilatación razonable y pasajera de estos tejidos.
Después de su amplio uso en el tratamiento de la disfunción eréctil, se descubrió otro uso terapéutico del sildenafilo, al que ahora se considera un tratamiento prometedor de la hipertensión pulmonar. La hipertensión pulmonar se debe a la elevación de la presión sanguínea en la circulación pulmonar, y es una enfermedad progresiva con mal pronóstico, debido a la disfunción cardíaca derecha que provoca; a menudo es mortal. La utilidad del sildenafilo en esta indicación se basa en la observación de que, en modelos animales de hipertensión pulmonar, las concentraciones de FDE-5 aumentan en la arteria pulmonar y en otras arterias del pulmón, lo que causa una disminución del GMPc y un aumento del tono en este vaso. Así pues, la administración de sildenafilo tiene un efecto beneficioso al aumentar la concentración de GMPc y la relajación. Evidentemente, cuanto más se conozcan las FDE, se añadirán más capítulos a esta historia a medida que se descubran otros usos.
Desde el punto de vista estructural, los receptores tirosina cinasa constan de una región de unión a hormonas que se expone al espacio extracelular, una región transmembrana y un dominio final citoplásmico. Son agonistas (moléculas que se unen a los receptores y los activan; ligandos) de estos receptores diversos factores de crecimiento (p. ej., factor de crecimiento epidérmico, factor de crecimiento de los fibroblastos y factor de crecimiento derivado de las plaquetas). Las cascadas de señalización creadas por la activación de receptores tirosina cinasa pueden amplificar la transcripción génica y la transcripción de novo de genes que intervienen en el crecimiento, en la diferenciación celular, y en movimientos como el ameboide o modificaciones de la forma.
El esquema general de esta vía de señalización comienza con la unión del agonista a la porción extracelular del receptor (fig. 1-12). La unión del agonista hace que se asocien dos receptores de unión al agonista (dimerización), lo que, a su vez, hace que se activen las propias tirosina cinasas o las asociadas. Posteriormente, las tirosina cinasas activadas fosforilan residuos de tirosina presentes en la otra subunidad del dímero (fosforilación cruzada) para activar por completo el receptor. Estos residuos de tirosina fosforilados que se encuentran en los dominios citoplásmicos del receptor dimerizado actúan ahora como «sitios de acoplamiento» de otras moléculas de señalización o proteínas adaptadoras, que tienen una secuencia específica denominada dominio SH2. Las proteínas adaptadoras que contienen este dominio pueden ser serina/treonina proteína cinasas, fosfatasas u otras proteínas de unión que colaboran en el ensamblaje de los complejos de señalización citoplásmicos que transmiten la señal desde un receptor activado hacia muchas vías de señalización, dando lugar, por último, a una respuesta celular. Una diferencia notable en las vías de señalización activadas por receptores tirosina cinasa es que no generan segundos mensajeros como el AMPc o el GMPc.

Una vía de señalización asociada a receptores tirosina cinasa activados produce la activación de otro tipo de GTPasa (monomérica) relacionada con las proteínas G triméricas antes descritas. Los miembros de la familia ras de proteínas G monoméricas son activados por muchos agonistas de factores de crecimiento de receptores tirosina cinasa y, a su vez, activan una cascada de señalización intracelular que conlleva la fosforilación y la activación de varias proteína cinasas denominadas proteína cinasas activadas por mitógenos (MAPK o MAP cinasa). En esta vía, la MAPK activada sufre una translocación al núcleo, donde activa la transcripción de una cohorte de genes necesarios para la proliferación y la supervivencia o la muerte de las células.
Los receptores de hormonas se unen a hormonas específicas para iniciar la señalización en las células
Los receptores de hormonas se encuentran en la superficie celular o en el interior de las células. Existen dos tipos generales de hormonas que activan estos receptores: las hormonas peptídicas y las hormonas esteroideas. Los receptores de hormonas peptídicas suelen ser proteínas de la membrana plasmática que pertenecen a la familia de los GPCR, y que llevan a cabo la señalización mediante la generación de segundos mensajeros como el AMPc y el IP3 y mediante la liberación de calcio de sus compartimentos de almacenamiento. La señalización de los GPCR ya se ha descrito, por lo que no se comentará más aquí. Las hormonas esteroideas, que constituyen el segundo grupo principal de hormonas, se unen a proteínas receptoras solubles situadas en el citosol o el núcleo (tipo I), o a receptores que ya están unidos a elementos de respuesta génica (promotores) de genes diana (tipo II). Entre los receptores de hormonas esteroideas de tipo I citoplásmicos o nucleares se encuentran los receptores de hormonas sexuales (andrógenos, estrógenos y progesterona), los receptores de glucocorticoides (cortisol) y los receptores de mineralocorticoides (aldosterona). Entre los receptores de hormonas esteroideas de tipo II de unión al ADN se encuentran los receptores de la vitamina A, la vitamina D, los retinoides y las hormonas tiroideas.
En general, los receptores de hormonas esteroideas tienen cuatro dominios conocidos: dominio variable, dominio de unión al ADN, región en bisagra y dominio de unión a la hormona y de dimerización. El dominio variable N-terminal es una región con escasa similitud de unos receptores a otros. El dominio de unión al ADN, situado centralmente, consta de dos motivos globulares donde el zinc se coordina con residuos de cisteína (dedo de zinc). Es el dominio que controla el gen diana que será activado, y también puede tener sitios para la fosforilación por parte de proteína cinasas que intervienen en la modificación de la actividad de transcripción del receptor. Entre el dominio central de unión al ADN y el dominio C-terminal de unión a la hormona, se encuentra un dominio en bisagra que controla el movimiento del receptor hacia el núcleo. El dominio C-terminal de unión a la hormona y de dimerización se une a la hormona y luego permite la dimerización del receptor, paso que es necesario para la unión al ADN. Cuando las hormonas esteroideas se unen a su receptor, el complejo formado por la hormona y el receptor se dirige al núcleo, donde se une a una secuencia específica de ADN situada en la región génica reguladora (promotor) de un gen de respuesta a hormonas. La secuencia del ADN diana en el promotor se denomina elemento de respuesta a hormonas (ERH). La unión al ERH del complejo formado por la hormona y el receptor puede activar o inhibir la transcripción. Aunque la mayoría de los efectos implican el aumento de la producción de proteínas específicas, las hormonas esteroideas también pueden inhibir la producción de ciertas proteínas. El resultado de la estimulación por estas hormonas es una modificación de la lectura o transcripción del genoma. Estas proteínas o enzimas de nueva síntesis afectarán al metabolismo celular, con respuestas atribuibles a esa hormona esteroidea concreta. La unión del complejo hormona-receptor activado a la cromatina altera la actividad ARN-polimerasa, lo que provoca un aumento o una disminución de la transcripción de porciones específicas del genoma. Como resultado, se produce ARNm, con la consiguiente producción de nuevas proteínas celulares o cambios en la tasa de síntesis de proteínas preexistentes. Los receptores de hormonas esteroideas también son objeto de reacciones de fosforilación y desfosforilación. Un área de investigación activa se centra en el efecto de esta modificación covalente. El modelo de acción de las hormonas esteroideas que se muestra en la figura 1-13 es aplicable en general a todas las hormonas esteroideas. A diferencia de éstas, las hormonas tiroideas y el ácido retinoico se unen a receptores que ya están asociados a los elementos de respuesta del ADN de los genes diana. Entre estos receptores hormonales de tipo II se encuentran los de las hormonas tiroideas, los retinoides, la vitamina A y la vitamina D. Los receptores que no están ocupados por la hormona están inactivos hasta que ésta se une, y actúan como represores cuando la hormona no está presente. Se hace referencia a estos receptores en el capítulo 31, Hipotálamo e hipófisis, y el capítulo 33, Glándulas suprarrenales.

FUNCIONES DE LOS SEGUNDOS MENSAJEROS
El concepto de segundos mensajeros y de sus funciones vitales en la señalización fue introducido por Earl Sutherland, hijo, que fue galardonado con el Premio Nobel en 1971 «por sus descubrimientos acerca de los mecanismos de acción de las hormonas». Sutherland descubrió el monofosfato de adenosina cíclico (AMPc) y demostró que era un producto intermedio fundamental en las respuestas celulares a las hormonas. Los segundos mensajeros transmiten y amplifican señales desde los receptores a moléculas diana posteriores como parte de las vías de señalización del interior de la célula. Existen tres tipos generales de segundos mensajeros: mensajeros hidrófilos e hidrosolubles, como el IP3, el AMPc, el GMPc o el Ca2+, que pueden difundir fácilmente a través del citosol; mensajeros lipídicos, no hidrosolubles e hidrófobos, que suelen asociarse a membranas con abundantes lípidos, como el DAG y los fosfatidilinositoles (p. ej., PIP3); y gases, como el NO, el CO y especies reactivas del oxígeno (ERO), que pueden difundir a través del citosol y también de la membrana plasmática. Una característica fundamental de los segundos mensajeros es que pueden ser sintetizados y degradados rápidamente por enzimas celulares, ser aislados con rapidez en un orgánulo o una vesícula unidos a la membrana, o tener una distribución restringida dentro de la célula. El hecho de que los segundos mensajeros aparezcan y desaparezcan rápidamente les permite amplificar y después concluir las reacciones de señalización. La amplificación es también un elemento fundamental de la señalización, que permite el ajuste de la respuesta. Por ejemplo, cuando un receptor celular es estimulado sólo brevemente por un ligando, la generación de un segundo mensajero concluirá con rapidez. Por el contrario, cuando una gran cantidad del ligando sigue estimulando un receptor, las concentraciones elevadas del segundo mensajero en la célula se mantendrán durante más tiempo antes de la conclusión. Las respuestas fisiológicas pueden variar, debido a que los segundos mensajeros responsables de la transmisión de señales en las células diana son limitados y a que cada célula diana tiene un complemento diferente de las vías de señalización intracelulares. Por lo tanto, cada célula del organismo está programada para responder a combinaciones específicas de primeros y segundos mensajeros, y estos mismos mensajeros pueden provocar una respuesta fisiológica distinta en diferentes tipos de células. Por ejemplo, el neurotransmisor acetilcolina puede hacer que el músculo cardíaco se relaje, que el músculo esquelético se contraiga y que las células secretoras secreten.

El AMPc es el segundo mensajero predominante tanto de los primeros mensajeros hormonales como de los no hormonales en todas las células
Como resultado de la unión a GPCR específicos, muchas hormonas peptídicas y catecolaminas producen un aumento casi inmediato de la concentración intracelular de AMPc. En lo que respecta a estos ligandos, el receptor se une a una proteína G estimuladora (Gαe), que después de la activación y el intercambio de GDP por GTP puede difundir dentro de la membrana para interactuar con la adenilato ciclasa (una gran proteína transmembrana que convierte el ATP intracelular en AMPc) y activarla. El segundo mensajero, el AMPc, interviene en la transducción de señales a partir de un amplio conjunto de hormonas y receptores, sobre todo a través de la activación de la proteína cinasa dependiente del AMPc (también denominada proteína cinasa A o PKA), pero también actúa activando directamente algunos canales de calcio.
Además de las hormonas que estimulan la producción de AMPc a través de un receptor acoplado a una proteína G estimuladora, algunas hormonas actúan para reducir la formación de AMPc y, por lo tanto, tienen efectos intracelulares opuestos. Estas hormonas se unen a receptores que están acoplados a una proteína G inhibidora (Gαi) en lugar de a una Gαe. El AMPc posiblemente sea el segundo mensajero que más se utiliza, y se ha demostrado que interviene en numerosas respuestas celulares a estímulos hormonales y no hormonales, no sólo en los organismos superiores, sino también en diversas formas de vida primitivas, como los mohos mucilaginosos y las levaduras. La señal intracelular que proporciona el AMPc concluye rápidamente al ser hidrolizado a 5’ AMP por la acción de miembros de una familia de enzimas conocidas como fosfodiesterasas (FDE), que en algunos casos son activadas por las concentraciones elevadas de nucleótidos cíclicos.
La proteína cinasa A es la principal diana que interviene en los efectos de señalización del AMPc
El AMPc activa la proteína cinasa A, que a su vez cataliza la fosforilación de diferentes proteínas celulares, canales iónicos y factores de transcripción. Esta fosforilación altera la actividad o la función de las proteínas diana, y finalmente conduce a la respuesta celular prevista. La proteína cinasa A es un tetrámero que, cuando se encuentra en estado inactivo, consta de dos subunidades catalíticas (con actividad proteína cinasa) y dos subunidades reguladoras. Cuando la concentración de AMPc en la célula es baja, las dos subunidades catalíticas se unen a las dos subunidades reguladoras y constituyen un tetrámero inactivo (fig. 1-14). Cuando se forma el AMPc en respuesta a la estimulación hormonal, dos moléculas de AMPc se unen a cada una de las subunidades reguladoras (R), haciendo que se disocien de las subunidades catalíticas. Esto atenúa la inhibición de las subunidades catalíticas (C), con lo que se activa la proteína cinasa A para que tenga lugar la fosforilación de los sustratos diana y se produzca una respuesta biológica a la hormona (fig. 1-14).

Además de activar la proteína cinasa A y de la fosforilación de las proteínas diana, en algunos tipos de células, el AMPc puede unirse directamente a canales iónicos y alterar su actividad. Los canales iónicos regulados por nucleótidos cíclicos pueden ser regulados por el AMPc o el GMPc, y son especialmente importantes en el sistema visual y el olfativo. Por ejemplo, existen muchos receptores olfativos que están acoplados a proteínas G y, al igual que los GPCR, cuando reciben un estímulo olfativo específico, se activa la adenilato ciclasa y se produce AMPc. Éste se une a continuación a un canal iónico regulado por AMPc que se abre para que el calcio (Ca2+) entre en la célula, causando la «despolarización» (entrada de iones positivos) de la membrana como parte de la percepción del olor.
El GMPc, el NO y el CO son segundos mensajeros importantes en las células musculares lisas y sensitivas
El GMPc es un segundo mensajero que se sintetiza gracias a una enzima, la guanilato ciclasa. Aunque no se conoce de forma adecuada, la función del GMPc como segundo mensajero, finalmente se ha reconocido su importancia en lo que respecta a la transducción de señales en los tejidos sensoriales (v. cap. 4) y en el músculo liso (v. caps. 8, 9, Componentes de la sangre, y 15). La diana principal del GMPc es la proteína cinasa G. El GMPc también puede activar directamente varios canales iónicos o bombas iónicas, que participan conjuntamente en la regulación de las concentraciones de Ca2+ en el citoplasma, no sólo en el músculo liso, sino también en células sensoriales. La activación de estos canales o bombas iónicos, ya sea directamente mediante la unión del GMPc o como resultado de la fosforilación por parte de la proteína cinasa G, también puede modificar la concentración de Ca2+ en el citoplasma, que entre otras cosas interviene en la contracción y la relajación de las células musculares lisas. La producción de GMPc está regulada por la activación de alguna de las dos formas de guanilato ciclasa: una forma citoplásmica soluble o una forma particulada que se encuentra en la membrana. Las guanilato ciclasas son las dianas del NO, una molécula de señalización paracrina que es sintetizada por las células endoteliales y otros tipos de células; esta vía puede intervenir en la relajación del músculo liso (v. fig. 1-7; v. también caps. 8 y 15) y en la neurotransmisión (v. cap. 6, Sistema nervioso autónomo), así como en la regulación de los genes y otras vías de transducción de señales. No debe confundirse el óxido nítrico, o monóxido de nitrógeno, con el óxido nitroso o gas hilarante, que se utiliza como anestésico. El NO es un radical libre muy reactivo al que inicialmente se denominó factor relajante derivado del endotelio (EDRF, endothelial-derived relaxing factor). Robert Furchgott, Louis Ignarro y Ferid Murad recibieron en 1998 el Premio Nobel por sus trabajos de investigación, que demostraron que el EDRF era en realidad un gas, el NO, que se produce por acción de una enzima, la NO sintetasa (NOS), en una reacción que convierte la Larginina en Lcitrulina.
La producción de NO por las células endoteliales se utiliza para la transmisión de una señal de relajación a las células musculares lisas vecinas (v. fig. 1-7). En esta vía, las células endoteliales son estimuladas por diversos factores, como el flujo sanguíneo, la acetilcolina o citocinas, con la consiguiente activación de la NO sintetasa. El NO difunde rápidamente hacia el interior de las células musculares lisas, donde activa a la guanilato ciclasa soluble para producir GMPc (v. fig. 1-7). La guanilato ciclasa soluble es una proteína heterodimérica que contiene también dos grupos prostéticos hemo (compuesto orgánico formado por hierro unido a un anillo heterocíclico denominado protoporfirina), que en la forma unida al hierro pueden asociarse al NO. La unión del NO a estos grupos prostéticos hemo activa la guanilato ciclasa, con la consiguiente producción de GMPc. Este segundo mensajero activa a la proteína cinasa G, lo que causa la fosforilación de diversas proteínas, entre ellas proteínas reguladoras de los canales y las bombas de calcio. Estos canales y bombas iónicos provocan conjuntamente una reducción de la concentración de calcio en el citoplasma celular, que al final causa la relajación del músculo liso vascular. En la degradación del GMPc interviene una fosfodiesterasa; su activación responde a las concentraciones elevadas de GMPc, que se une a esta enzima. Este circuito sirve como retroalimentación negativa para regular la concentración intracelular de calcio en el músculo liso, el tono muscular (contracción parcial continua del músculo) y, en parte, la presión arterial (v. fig. 1-7). Esta vía de señalización concluye también por la reducción del NO, un compuesto muy reactivo cuya semivida es muy breve. Así pues, la producción de NO por las células endoteliales de los vasos sanguíneos es un factor importante en la regulación del tono vascular al intervenir en las vías de transducción de señales que causan la vasodilatación y la vasoconstricción (v. cap. 15). Como ya se ha mencionado, existe otra forma de guanilato ciclasa, la guanilato ciclasa particulada, que actúa como proteína transmembrana y es un receptor del péptido natriurético auricular (PNA) producido por los cardiomiocitos como respuesta al aumento del volumen sanguíneo. La unión del PNA a la guanilato ciclasa particulada hace que se sintetice GMPc, lo que reduce la cantidad de agua, la concentración de sodio y el volumen sanguíneo en la circulación (v. caps. 17, Mecanismos de control en la función circulatoria, y 23).
Se conoce menos el papel como segundo mensajero del CO, otro gas. Al igual que el NO, el CO se une al hierro en el sitio activo del grupo hemo; así, el CO puede activar guanilato ciclasas para producir GMPc, aunque de forma menos potente que el NO. El hecho de que el CO se una al hierro en el sitio activo de grupos prostéticos hemo también explica la toxicidad del CO inhalado, que puede unirse al grupo hemo de la hemo globina y desplazar así al oxígeno. El CO también se une a una proteína con un grupo hemo, la citocromo oxidasa, que es una enzima mitocondrial fundamental necesaria para la síntesis de ATP. La inhibición de la citocromo oxidasa por la unión del CO disminuye las concentraciones de ATP. En las células, el CO se produce normalmente como subproducto de la reacción catalizada por la hemooxigenasa (HO). La oxidación del grupo hemo por parte de esta enzima da lugar a la producción de CO y biliverdina (responsable del color verde de los hematomas). Aunque es un activador débil de las guanilato ciclasas, se considera que el CO derivado de la hemooxigenasa interviene en la señalización neuronal, incluidos, entre otros procesos fisiológicos, la transmisión de señales olfativas, el tono vascular y la agregación plaquetaria. El CO puede regular también la actividad de las MAPK, y las numerosas vías de señalización reguladas por estas moléculas de señalización amplifican el papel del CO en la proliferación, la inflamación y la muerte celular.
Los lípidos tienen importantes funciones reguladoras como segundos mensajeros, entre ellas la participación en la respuesta inmunitaria
Los lípidos difunden libremente a través de la membrana plasmática y las membranas de los orgánulos, por lo que no pueden almacenarse en vesículas unidas a membranas y deben sintetizarse, en función de las necesidades, en el lugar donde sean precisos. Muchos segundos mensajeros lipídicos derivan de dos fuentes: el 4,5-bisfosfato de fosfatidilinositol (PIP2) y los esfingolípidos. Otros mensajeros lipídicos, como los esteroides, los derivados del ácido retinoico, las prostaglandinas y el ácido lisofosfatídico, son también reguladores importantes de muchas funciones celulares, y se producen a través de diversos mecanismos. En el siguiente apartado, se explican y describen convenientemente importantes mensajeros derivados del fosfatidilinositol, como el IP3y el DAG. La ceramida es un segundo mensajero lipídico que se sintetiza a partir de la esfingomielina por acción de la esfingomielinasa, una enzima que se localiza en la membrana plasmática. La activación de la esfingomielinasa se produce por la unión de las citocinas (pequeños péptidos secretados, entre ellos el factor de necrosis tumoral [TNF, tumor necrosis factor] y lainterleucina 1, que intervienen en las respuestas inmunitarias e inflamatorias) a sus receptores. Estos receptores activados se acoplan después a la esfingomielinasa, causando su activación, la síntesis de ceramida y la posterior activación de la vía de las MAPK.
Diacilglicerol y trifosfato de inositol
Algunos GPCR se acoplan a una enzima efectora diferente, la fosfolipasa C, que se encuentra en la lámina interna de la membrana plasmática. Al igual que otros GPCR, la unión de un ligando o de un agonista al receptor causa la activación de la proteína G asociada, generalmente Gαq (o Gq). Dependiendo de la isoforma de la proteína G asociada al receptor, la subunidad α o la subunidad βγ pueden estimular a la fosfolipasa C, lo que se traduce en la hidrólisis del PIP2, un fosfolípido de la membrana, dando lugar a DAG e IP3, que actúan como segundos mensajeros en la célula (fig. 1-15).
En su papel de segundo mensajero, el DAG se acumula en la membrana plasmática y activa a la proteína cinasa C, una enzima sensible al calcio y a los lípidos que está unida a la membrana. Cuando esta enzima se activa, cataliza la fosforilación de proteínas específicas (entre ellas otras enzimas y factores de transcripción) en la célula para producir efectos fisiológicos adecuados, como la proliferación celular. Se ha demostrado que varios ésteres forbólicos promotores de tumores que imitan la estructura del DAG activan la proteína cinasa C. Por lo tanto, pueden eludir el receptor pasando a través de la membrana plasmática y activando directamente la proteína cinasa C, causando la fosforilación de dianas posteriores y dando lugar a la proliferación celular.
El IP3 promueve la liberación de iones de calcio en el citoplasma mediante la activación de canales de liberación del calcio regulados por el IP3 que se encuentran en el retículo endoplásmico o sarcoplásmico (v. cap. 8). La concentración de iones calcio libres en el citoplasma de la mayoría de las células es del orden de 10–7 M. Con la estimulación apropiada, la concentración puede aumentar bruscamente 1 000 veces o más. El aumento resultante de calcio libre citoplásmico es sinérgico con la acción del DAG en la activación de algunas formas de proteína cinasa C y también puede activar otros muchos procesos dependientes del calcio.
Existen mecanismos para invertir los efectos del DAG y del IP3 eliminándolos con rapidez del citoplasma. El IP3 es desfosforilado a inositol, que puede reutilizarse en la síntesis de fosfoinosítidos. El DAG se convierte en ácido fosfatídico por la adición de un grupo fosfato al carbono 3. Al igual que el inositol, el ácido fosfatídico puede usarse para la nueva síntesis de fosfolípidos de inositol de la membrana (fig. 1-15). Al eliminar la señal del IP3, el calcio es bombeado rápidamente hacia sus lugares de almacenamiento, y se restablecen los valores bajos de la concentración de calcio en el citoplasma que había antes del estímulo.
En respuesta a la estimulación, no sólo se produce IP3, sino también otros fosfoinositoles quizá más potentes, como IP4 o IP5, que se forman por la hidrólisis de precursores adecuados de fosfatidilinositol fosfato que se encuentran en la membrana celular. No se conoce la función precisa de estos fosfoinositoles. Hay indicios de que la hidrólisis de otros fosfolípidos, como la fosfatidilcolina, puede desempeñar una función análoga en los procesos de señalización hormonal.
Las células utilizan el calcio como segundo mensajero manteniendo concentraciones bajas de calcio intracelular en reposo
La concentración de calcio citosólico en una célula que no ha sido estimulada es unas 10 000 veces menor que en el líquido extracelular (10–7 M frente a 10–3 M, respectivamente). Este amplio gradiente de calcio se mantiene gracias a la limitada permeabilidad al calcio de la membrana plasmática, a los transportadores de calcio que existen en la membrana plasmática y expulsan calcio, a las bombas de calcio de la membrana de orgánulos intracelulares que almacenan calcio, y a las proteínas del citoplasma y de los orgánulos que se unen al calcio para amortiguar su concentración citoplásmica libre. Varios canales iónicos de la membrana plasmática sirven para aumentar la concentración de calcio en el citosol. Estos canales iónicos están regulados por voltaje y se abren cuando la membrana plasmática se despolariza, o bien pueden estar controlados por la fosforilación por la proteína cinasa A o la proteína cinasa C, lo cual es importante para regular la función contráctil del músculo liso y del músculo cardíaco (v. caps. 8 y 13).

Además de los canales iónicos de la membrana plasmática, el retículo endoplásmico, un extenso orgánulo unido a la membrana, tiene otros dos tipos principales de canales iónicos que, cuando se activan, liberan calcio en el citoplasma, haciendo que aumente su concentración citoplásmica. El IP3, una pequeña molécula hidrosoluble activa al canal de liberación de calcio regulado por el IP3 en la membrana del retículo endoplásmico o sarcoplásmico (un tipo especializado de retículo endoplásmico del músculo liso y del músculo estriado). El canal activado se abre para que el calcio fluya hacia el citoplasma siguiendo un gradiente de concentración. Los canales regulados por el IP3 son estructuralmente similares al segundo tipo de canal de liberación de calcio, elreceptor de rianodina, que se encuentra en el retículo sarcoplásmico de las células musculares y las neuronas. En el músculo cardíaco y esquelético, los receptores de rianodina liberan calcio para desencadenar la contracción muscular cuando un potencial de acción invade el sistema de túbulos transversos de estas células (v. cap. 8). Ambos tipos de canales están regulados por retroalimentación positiva: el calcio citosólico liberado puede unirse al receptor para potenciar la posterior liberación de calcio. Esta forma de retroalimentación positiva se denomina liberación de calcio inducida por el calcio, y hace que éste se libere repentinamente en el citoplasma, seguido por un flujo en forma de onda del ión a través de todo el citoplasma (v. caps. 8 y 13).
El aumento del calcio libre en el citosol activa numerosas vías diferentes de transducción de señales y da lugar a muchos procesos fisiológicos, como la contracción muscular, la secreción de neurotransmisores y la polimerización del citoesqueleto. El calcio actúa como un segundo mensajero de dos formas:
• Se une directamente a una diana efectora, como la proteína cinasa C, para promover su activación.
• Se une a una proteína citosólica intermedia de unión al calcio, como la calmodulina.
La calmodulina es una pequeña proteína (peso molecular de 16 kDa) con cuatro sitios de unión para el calcio. La unión del calcio a la calmodulina hace que ésta sufra un cambio drástico de conformación y aumente la afinidad de este «receptor» del calcio intracelular por sus efectores (fig. 1-16). Los complejos de calcio y calmodulina se unen y activan diversas proteínas celulares, como las proteína cinasas, que son importantes en muchos procesos fisiológicos, como la contracción del músculo liso (cinasa de las cadenas ligeras de la miosina; v. cap. 8) y la síntesis de hormonas (síntesis de aldosterona; v. cap. 34, Páncreas endocrino), y finalmente causan una alteración de la función celular.
En la conclusión de la acción del calcio intervienen dos mecanismos. El IP3 sintetizado por la activación de la fosfolipasa C puede ser desfosforilado por fosfatasas celulares, con la consiguiente inactivación de este segundo mensajero. Además, el calcio que entra en el citosol puede eliminarse deprisa. La membrana plasmática, el retículo endoplásmico, el retículo sarcoplásmico y las membranas mitocondriales tienen bombas de calcio reguladas por el ATP como la ATPasa de calcio de la membrana plasmática (PMCA, plasma membrane calcium ATPase), que bombea el calcio libre del citosol al espacio extracelular o a un orgánulo intracelular. La reducción de la concentración de calcio en el citosol modifica el equilibrio y favorece la liberación de calcio de la calmodulina; ésta se disocia a continuación de las diversas proteínas que estaban activadas y la célula vuelve a su estado inicial.

Las especies reactivas del oxígeno pueden actuar como segundos mensajeros y como mediadores patológicos
Entre las especies reactivas del oxígeno (ERO) se encuentran tanto moléculas de radicales libres, como el superóxido (O2−), el radical hidroxilo y el NO, o moléculas no radicales, como el peróxido de hidrógeno (H2O2). Estas moléculas son muy reactivas (pueden oxidar aminoácidos de proteínas o ácidos nucleicos, tanto en el ARN como el ADN) ya que tienen un electrón no emparejado. Las ERO pueden formarse en respuesta a activadores ambientales, como contaminantes del aire, humo, nieblas tóxicas y la exposición a la radiación (p. ej., luz ultravioleta). En circunstancias normales, las oxidorreductasas forman parte del sistema mitocondrial de transporte de electrones que da lugar a ERO, aunque existen otras fuentes celulares, como las xantina-oxidorreductasas, las lipooxigenasas, las ciclooxigenasas y las nicotinamida adenina dinucleótido fosfato (NADPH) oxidasas. La NADPH oxidasa es una de las principales fuentes de enzimas que generan ERO y la fuente de las ERO que intervienen en la señalización. La función fisiológica de la producción de ERO por parte de las NADPH oxidasas incluye el estallido respiratorioproducido por células fagocíticas, como los neutrófilos y los macrófagos, que da lugar a la producción de grandes cantidades de ERO (v. cap. 9). El estallido respiratorio es una característica fundamental de la respuesta del huésped a la infección, y causa la destrucción de las bacterias o los hongos. La segunda función fisiológica de las ERO generadas por la NADPH oxidasa se fundamenta en su capacidad de reaccionar con residuos aminoácidos de proteínas, lo cual modifica su actividad, situación y estabilidad. Además de la modificación directa de las proteínas, las ERO pueden oxidar también ácidos nucleicos, como el ARN y el ADN. La lesión oxidativa del ADN puede causar mutaciones de los genes o alterar la expresión génica por el despareamiento de las bases dañadas.
Aunque el conocimiento de los mecanismos que conducen a la generación de ERO en respuesta a la estimulación de receptores sigue evolucionando, poco se sabe sobre las modificaciones moleculares específicas en las que intervienen ERO en el contexto de la transducción de señales, pese a que se han descrito muchas vías de señalización que responden a la generación de ERO. Estas vías de transducción de señales son muy diversas, e incluyen las que regulan el crecimiento, la supervivencia, la diferenciación y la muerte de las células. Esta forma de señalización en la que se producen ERO que actúan como segundos mensajeros se denomina en ocasiones señalización redox; se considera que las NADPH oxidasas son la principal fuente de ERO para este fin (fig. 1-17). El complejo NADPH oxidasa consta de seis subunidades: p22-phox, gp91-phox (la subunidad catalítica), p67-phox, p47-phox y una pequeña proteína fijadora de GTP de la familia Rho (Rac1 o Rac2). Las subunidades gp22-phox1 y gp91-phox son proteínas transmembrana, que localizan el complejo NADPH en el citosol o en las membranas de los orgánulos. En respuesta a la estimulación, se incorporan proteínas reguladoras del citosol al heterodímero p22-p91 de la membrana para formar un complejo enzimático NADPH oxidasa activo que induce la generación de O2–, que es convertido rápidamente en H2O2 por una enzima neutralizante como la superóxido dismutasa. Se ha observado que muchos primeros mensajeros estimulan el ensamblaje de la NADPH oxidasa activa y la generación de ERO, entre ellos factores vasoactivos, como la angiotensina II y la endotelina, y citocinas como el TNF, así como diversos factores de crecimiento y hormonas. Además de estos mensajeros, las fuerzas mecánicas (incluida la tensión de cizallamiento de los movimientos de los líquidos) y las fuerzas de estiramiento también activan las NADPH oxidasas y la producción de ERO. Como ya se ha mencionado, las diversas NADPH oxidasas tienen distinta composición, expresión y localización celular, lo que no sólo influye en la cantidad de ERO producida sino también en la variedad de las vías de transducción de señales que regulan.
Se considera que el escaso nivel normal de producción de ERO que se utiliza eficientemente para la transducción de señales sirve sólo para oxidar las dianas sensibles a la oxidación más reactivas. Por el contrario, es probable que las concentraciones elevadas de ERO oxiden dianas más resistentes y menos reactivas, y en este contexto las ERO pueden promover una afección denominada estrés oxidativo (un desequilibrio entre la producción y la degradación de ERO). Para mantener la homeostasis celular, debe alcanzarse el equilibrio entre la producción y la utilización o destrucción de las ERO. Para contrarrestar los sistemas de generación de ERO existen mecanismos de depuración de estas moléculas reactivas. En primer lugar, las semividas de las moléculas de ERO son relativamente breves cuando las concentraciones son elevadas. En segundo lugar, la capacidad de difusión a través de las membranas que tienen algunas ERO (como el O2–) es limitada, y esta limitación puede superarse mediante el uso de canales iónicos para el traslado entre el exterior y el interior de las células o los orgánulos. En tercer lugar, se encuentran las enzimas antioxidantes celulares, que tienen una función esencial en el mantenimiento de la homeostasis. Entre estos antioxidantes se encuentran la superóxido dismutasa y la catalasa, que reduce el O2–, dando agua y oxígeno. Se ha implicado al estrés oxidativo en numerosas enfermedades cardiovasculares, como la arteroesclerosis y las lesiones isquémicas de los tejidos (p. ej., el accidente cerebrovascular y el infarto de miocardio), y en enfermedades del sistema nervioso, como la enfermedad de Parkinson, la enfermedad de Alzheimer, y la esclerosis lateral amiotrófica o enfermedad de Lou Gherig. Los intentos de contrarrestar el estrés oxidativo en los pacientes con estas y otras enfermedades usando complementos dietéticos, como la vitamina E, dietas alimentarias ricas en antioxidantes, o mediante la administración de fármacos depuradores de radicales han dado resultados desiguales. Dado que no existen pruebas sólidas para utilizar esta estrategia, es necesario tomar medidas más concretas para conocer mejor las dianas de las ERO y sus efectos, a fin de obtener agentes terapéuticos mejor diseñados.

VÍAS DE SEÑALIZACIÓN MITÓGENAS
Las células de los mamíferos tienen muchas vías de señalización que en conjunto dan lugar a diferentes resultados, como el crecimiento, la proliferación y la diferenciación de las células. Los primeros mensajeros mitógenos, como el factor de crecimiento de los fibroblastos (FGF), el factor de crecimiento similar a la insulina y el factor estimulante de las colonias de granulocitos, entre muchos otros, pueden actuar estimulando la progresión a través del ciclo celular y la mitosis. Estos factores peptídicos tienen otras funciones, además de promover el crecimiento celular y la mitosis. Por ejemplo, el FGF también puede estimular la diferenciación mesodérmica y la angiogenia. Algunas de estas vías determinan finalmente el destino de las células, decidiendo entre la supervivencia y la muerte. Estos resultados fisiológicos se deben a la interpretación del ambiente celular por parte de la célula, y gran parte de esta información es recibida por receptores situados en la membrana plasmática y dentro de la célula. La información de estos receptores se transmite a través de cascadas de señalización, pasando de una molécula a otra en forma de mensajeros como el AMPc, así como modificaciones como la fosforilación de determinadas proteínas que forman la propia vía. Muchas de estas cascadas de transducción de señales causan la activación de genes necesarios para que se produzcan alteraciones del metabolismo, la migración, la proliferación y la muerte de las células. De este modo, un solo estímulo puede conducir a la expresión de un grupo de genes cuyas funciones pueden variar mucho. Una importante vía de señalización que transmite señales mitógenas es la vía de las MAPK.
Las vías de señalización de las MAPK actúan sin segundos mensajeros
Existen tres vías de MAPK principales, denominadas MAPK/ERK, SAPK/JNK y p38. Estas vías son posteriores a muchos receptores y transmiten diversas señales externas para producir diferentes respuestas celulares, como la mitosis, el crecimiento, la diferenciación y la inflamación. Las vías de señalización de las MAPK son de las pocas vías que actúan sin necesidad de segundos mensajeros; en su lugar, dependen de una cascada modular que consta de tres proteína cinasas dispuestas en una vía jerárquica. En la figura 1-12 se muestra la disposición modular general de estas vías. La vía de las MAPK puede ser activada por la unión de un ligando, que causa la activación de la cinasa apical de la cascada, la MAP cinasa cinasa cinasa (MAPKKK). La MAPKKK activada fosforila posteriormente la MAP cinasa cinasa (MAPKK o MAP2 cinasa), que a su vez fosforila la MAPK. La MKKK (también denominada Raf-cinasa) es activada por la interacción con un miembro de la familia Ras de proteínas G pequeñas, que están unidas a la membrana plasmática (v. fig. 1-12). Ras se activa (Ras-GTP) en respuesta a la unión del factor de crecimiento a su receptor relacionado (es decir, el FGF con el receptor del FGF). La fosforilación y la activación del último miembro de la cascada, la MAPK, causa su translocación desde el citoplasma al núcleo, donde fosforila proteínas, entre ellas factores de transcripción, que regulan la expresión de genes importantes para la activación del ciclo celular, la mitosis, el crecimiento y la diferenciación de las células, y la inflamación. Dos ejemplos de genes que se expresan en respuesta a la señalización de las MAPK son los que codifican los factores de transcripción c-Myc y c-Fos. Estos factores de transcripción estimulan la expresión de proteínas necesarias para la progresión del ciclo celular, como la ciclina D, que se necesita para la transición de la fase G1 a la fase S. Cuando formas mutantes u oncógenas de c-Myc y c-Fos se expresan en niveles elevados en las células, puede producirse una proliferación celular descontrolada y el cáncer.
La pérdida de la señalización mitógena puede causar la muerte celular
Cuando las células se ven privadas de señales mitógenas y de supervivencia, son infectadas por virus, se exponen a sustancias químicas tóxicas o sufren una gran afectación del ADN o inflamación, se activan programas de señalización que promueven su muerte. Este tipo de muerte celular, denominada muerte celular programada o apoptosis, es una muerte celular altruista que no expone a las células circundantes al contenido tóxico de la célula muerta. Para evitar este «contagio», las células afectadas se encogen, el citoesqueleto se colapsa, los cromosomas se fragmentan, y la célula se disgrega en pequeñas estructuras unidas a la membrana que son fagocitadas por las células vecinas o los macrófagos (fig. 1-18). Existen muchas cascadas de señalización que pueden desembocar en la muerte celular; comparten algunas características comunes y la mayoría conlleva la activación de una cascada de proteasas. Esta cascada está compuesta por varias proteasas que tienen un residuo de cisteína en sus sitios activos; estas proteasas escinden proteínas diana en los residuos de ácido aspártico, por lo que reciben el nombre decaspasas (de c isteína-aspártico prote asas). Las caspasas son sintetizadas como procaspasas inactivas que pueden ser activadas por diferentes mecanismos que eliminan el prodominio y provocan la formación de una caspasa activa. La cascada de las caspasas comienza cuando las caspasas iniciadoras se agrupan y se autoactivan. Estas caspasas iniciadoras escinden, a continuación, caspasas posteriores, denominadas caspasas efectoras, que amplifican esta cascada proteolítica. Las caspasas activadas escinden proteínas celulares esenciales, causando una desintegración general en las estructuras y los orgánulos celulares. En algunos casos, la escisión proteolítica de las proteínas diana por parte de una caspasa puede activar una actividad enzimática latente, como la degradación del ADN (activación de la ADNasa). Como resultado, la célula se disgrega o se fragmenta, formando pequeños cuerpos unidos a la membrana, y las células vecinas o los macrófagos fagocitan estos restos celulares. Las caspasas forman parte del complemento normal de las proteínas celulares, y al ser activadas llevan a la célula a la muerte, por lo que existen numerosos mecanismos para regularlas estrechamente e inhibir este programa de muerte celular. Estos supresores incluyen la regulación no sólo de la agregación a las caspasas iniciadoras activadas, sino también de la expresión de otras proteínas celulares que inhiben la activación de las caspasas, los denominados inhibidores de la apoptosis. Para el desarrollo del programa de apoptosis, es fundamental que no se liberen productos celulares tóxicos en el espacio tisular circundante. Esto diferencia la muerte celular programada, o apoptosis, de la necrosis. La muerte celular necrótica suele deberse a la lesión aguda de las células, y responde a la rotura celular y la liberación del contenido en las células circundantes, lo que puede estimular una respuesta inflamatoria y causar un daño mayor.

No todas las muertes celulares son patológicas. A lo largo de un día, pueden morir hasta un millón de células por apoptosis. Estas muertes celulares sirven para mantener un equilibrio homeostático mediante la eliminación de las células que son viejas o no están sanas, y su sustitución por células nuevas y sanas. La muerte celular no patológica se produce durante el desarrollo, y es esencial para modelar el cuerpo (los órganos y los dedos de las manos y de los pies). Otro ejemplo de muerte celular no patológica se produce durante el desarrollo del encéfalo, y sirve para eliminar las neuronas sobrantes. Un ejemplo final de muerte celular necesaria es la eliminación de las células inmunitarias que reconocen autoantígenos. La incapacidad de eliminar estas células inmunitarias puede causar diversas enfermedades, como la diabetes mellitus de tipo 1, el lupus eritematoso diseminado, la artritis reumatoide y la esclerosis múltiple, entre otras muchas.
La apoptosis también puede ser patológica si se eliminan demasiadas células. Ejemplos de ello son la muerte celular que se produce en el accidente cerebrovascular, en el que las células encefálicas mueren por falta de aporte sanguíneo, y la enfermedad de Parkinson, un trastorno degenerativo del sistema nervioso. Por el contrario, la elusión de la apoptosis constituye la base de enfermedades como la leucemia y otras neoplasias malignas.
Resumen del capítulo
• La fisiología es el estudio de las funciones de los organismos vivos y de la forma en que se regulan e integran.
• Es necesario un medio interno estable para el funcionamiento normal de las células y la supervivencia del organismo.
• La homeostasis es el mantenimiento de situaciones estables en el organismo mediante mecanismos fisiológicos coordinados.
• La retroalimentación negativa y la positiva se utilizan para regular las respuestas del organismo a cambios en el entorno.
• La situación estable y el estado de equilibrio son situaciones distintas. La situación estable no cambia con el transcurso del tiempo, mientras que el equilibrio representa el equilibrio entre fuerzas opuestas.
• La comunicación celular es esencial para integrar y coordinar los sistemas del organismo, de modo que puedan participar en diferentes funciones.
• Los modos de comunicación celular difieren en lo que respecta a la distancia y la velocidad.
• Una característica distintiva de la señalización celular es que es regulable, existiendo diversos mecanismos para activar y concluir la transducción de señales.
• Los activadores de las vías de transducción de señales se denominan primeros mensajeros, y entre ellos se encuentran iones, gases, péptidos pequeños, hormonas proteicas, metabolitos y esteroides.
• Los receptores reciben y transmiten primeros mensajeros (moléculas de señalización); se encuentran en la membrana plasmática o en el interior de la célula.
• Los segundos mensajeros son importantes para la amplificación y el flujo de la señal recibida por los receptores de la membrana plasmática. Algunos segundos mensajeros, como el calcio, interactúan con proteínas accesorias, como la calmodulina, para estimular el flujo de transducción de señales.
• Las especies reactivas del oxígeno constituyen una clase de segundos mensajeros que son muy reactivos, y que transmiten señales oxidando proteínas y ácidos nucleicos. Estas moléculas reactivas pueden producirse en una vía de «señalización redox» en la que participan NADPH oxidasas.
• Las moléculas de señalización mitógena (p. ej., factores de crecimiento) activan cascadas de señalización que promueven el crecimiento, la proliferación y la diferenciación de las células.
• La ausencia de señalización mitógena, además del estrés o la lesión celular, puede activar la apoptosis, una vía de muerte celular intrínseca. La característica de la señalización apoptótica es la activación de una cascada proteolítica en la que intervienen unas proteasas denominadas caspasas. La apoptosis difiere de la muerte celular necrótica, en que el contenido celular es fagocitado en lugar de verterse en el espacio celular y de causar inflamación.

No hay comentarios.:
Publicar un comentario